BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21753055)

  • 1. Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion.
    Sheffield KM; Blob RW
    J Exp Biol; 2011 Aug; 214(Pt 15):2603-15. PubMed ID: 21753055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna).
    Butcher MT; Blob RW
    J Exp Biol; 2008 Apr; 211(Pt 8):1187-202. PubMed ID: 18375843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.
    Butcher MT; White BJ; Hudzik NB; Gosnell WC; Parrish JH; Blob RW
    J Exp Biol; 2011 Aug; 214(Pt 15):2631-40. PubMed ID: 21753057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT; Espinoza NR; Cirilo SR; Blob RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor loading mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): comparative and evolutionary implications.
    Sheffield KM; Butcher MT; Shugart SK; Gander JC; Blob RW
    J Exp Biol; 2011 Aug; 214(Pt 15):2616-30. PubMed ID: 21753056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.
    Gosnell WC; Butcher MT; Maie T; Blob RW
    J Exp Biol; 2011 Oct; 214(Pt 20):3455-66. PubMed ID: 21957109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion.
    Reilly SM; Willey JS; Biknevicius AR; Blob RW
    J Exp Biol; 2005 Mar; 208(Pt 6):993-1009. PubMed ID: 15767301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.
    Wilson MP; Espinoza NR; Shah SR; Blob RW
    Anat Rec (Hoboken); 2009 Jul; 292(7):935-44. PubMed ID: 19548305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.
    Kawano SM; Economy DR; Kennedy MS; Dean D; Blob RW
    J Exp Biol; 2016 Feb; 219(Pt 3):341-53. PubMed ID: 26596535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis).
    Blob RW; Biewener AA
    J Exp Biol; 2001 Mar; 204(Pt 6):1099-122. PubMed ID: 11222128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical consequences of scaling.
    Biewener AA
    J Exp Biol; 2005 May; 208(Pt 9):1665-76. PubMed ID: 15855398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the hindlimb-strength hypothesis: non-aerial locomotion by Chiroptera is not constrained by the dimensions of the femur or tibia.
    Riskin DK; Bertram JE; Hermanson JW
    J Exp Biol; 2005 Apr; 208(Pt 7):1309-19. PubMed ID: 15781891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twisting and bending: the functional role of salamander lateral hypaxial musculature during locomotion.
    Bennett WO; Simons RS; Brainerd EL
    J Exp Biol; 2001 Jun; 204(Pt 11):1979-89. PubMed ID: 11441039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.
    Kawano SM; Blob RW
    Integr Comp Biol; 2013 Aug; 53(2):283-94. PubMed ID: 23667046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of muscle function and bone strain in the hindlimb of the river cooter turtle (Pseudemys concinna).
    Aiello BR; Blob RW; Butcher MT
    J Morphol; 2013 Sep; 274(9):1060-9. PubMed ID: 23733583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cross-sectional geometry, curvature, and limb posture in maintaining equal safety factors: a computed tomography study.
    Brassey CA; Kitchener AC; Withers PJ; Manning PL; Sellers WI
    Anat Rec (Hoboken); 2013 Mar; 296(3):395-413. PubMed ID: 23382038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal strain patterns and growth in the emu hindlimb during ontogeny.
    Main RP; Biewener AA
    J Exp Biol; 2007 Aug; 210(Pt 15):2676-90. PubMed ID: 17644682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femoral mechanics in the lesser bushbaby (Galago senegalensis): structural adaptations to leaping in primates.
    Burr DB; Piotrowski G; Martin RB; Cook PN
    Anat Rec; 1982 Mar; 202(3):419-29. PubMed ID: 7072986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.