BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21753842)

  • 1. Regenerative medicine: drawing breath after spinal injury.
    Zukor K; He Z
    Nature; 2011 Jul; 475(7355):177-8. PubMed ID: 21753842
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional regeneration of respiratory pathways after spinal cord injury.
    Alilain WJ; Horn KP; Hu H; Dick TE; Silver J
    Nature; 2011 Jul; 475(7355):196-200. PubMed ID: 21753849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cervical spinal cord injuries and respiratory insufficiency: a revolutionary treatment?].
    Vinit S
    Med Sci (Paris); 2012 Jan; 28(1):33-6. PubMed ID: 22289826
    [No Abstract]   [Full Text] [Related]  

  • 4. Training and anti-CSPG combination therapy for spinal cord injury.
    García-Alías G; Fawcett JW
    Exp Neurol; 2012 May; 235(1):26-32. PubMed ID: 21946272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [New treatments for spinal cord injuries].
    Salamanca F
    Gac Med Mex; 2002; 138(4):379-80. PubMed ID: 12200884
    [No Abstract]   [Full Text] [Related]  

  • 6. IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury.
    Novotna I; Slovinska L; Vanicky I; Cizek M; Radonak J; Cizkova D
    Cell Mol Neurobiol; 2011 Nov; 31(8):1129-39. PubMed ID: 21630006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition.
    Jones LL; Sajed D; Tuszynski MH
    J Neurosci; 2003 Oct; 23(28):9276-88. PubMed ID: 14561854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury.
    Massey JM; Hubscher CH; Wagoner MR; Decker JA; Amps J; Silver J; Onifer SM
    J Neurosci; 2006 Apr; 26(16):4406-14. PubMed ID: 16624960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Strategies for axonal regeneration after spinal cord injury].
    Kitamura K; Nakamura M; Toyama Y; Okano H
    Tanpakushitsu Kakusan Koso; 2008 Mar; 53(4 Suppl):411-7. PubMed ID: 21089312
    [No Abstract]   [Full Text] [Related]  

  • 10. Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC.
    Kwok JC; Afshari F; García-Alías G; Fawcett JW
    Restor Neurol Neurosci; 2008; 26(2-3):131-45. PubMed ID: 18820407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benefit of chondroitinase ABC on sensory axon regeneration in a laceration model of spinal cord injury in the rat.
    Shields LB; Zhang YP; Burke DA; Gray R; Shields CB
    Surg Neurol; 2008 Jun; 69(6):568-77; discussion 577. PubMed ID: 18486695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical Recruitment of Spinal V2a Interneurons into Phrenic Motor Circuitry after High Cervical Spinal Cord Injury.
    Zholudeva LV; Karliner JS; Dougherty KJ; Lane MA
    J Neurotrauma; 2017 Nov; 34(21):3058-3065. PubMed ID: 28548606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans.
    Cafferty WB; Yang SH; Duffy PJ; Li S; Strittmatter SM
    J Neurosci; 2007 Feb; 27(9):2176-85. PubMed ID: 17329414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining an autologous peripheral nervous system "bridge" and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord.
    Houle JD; Tom VJ; Mayes D; Wagoner G; Phillips N; Silver J
    J Neurosci; 2006 Jul; 26(28):7405-15. PubMed ID: 16837588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3.
    Massey JM; Amps J; Viapiano MS; Matthews RT; Wagoner MR; Whitaker CM; Alilain W; Yonkof AL; Khalyfa A; Cooper NG; Silver J; Onifer SM
    Exp Neurol; 2008 Feb; 209(2):426-45. PubMed ID: 17540369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory neuron subpopulations and pathways potentially involved in the reactivation of phrenic motoneurons after C2 hemisection.
    Boulenguez P; Gauthier P; Kastner A
    Brain Res; 2007 May; 1148():96-104. PubMed ID: 17379194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in chondroitinase delivery for spinal cord repair.
    Wei Y; Andrews MR
    J Integr Neurosci; 2022 Jun; 21(4):118. PubMed ID: 35864769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming inhibition in the damaged spinal cord.
    Fawcett JW
    J Neurotrauma; 2006; 23(3-4):371-83. PubMed ID: 16629623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of chondroitin sulfate proteoglycans induces sprouting of intact purkinje axons in the cerebellum of the adult rat.
    Corvetti L; Rossi F
    J Neurosci; 2005 Aug; 25(31):7150-8. PubMed ID: 16079397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.