These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 21753849)

  • 61. A Latent Propriospinal Network Can Restore Diaphragm Function after High Cervical Spinal Cord Injury.
    Cregg JM; Chu KA; Hager LE; Maggard RSJ; Stoltz DR; Edmond M; Alilain WJ; Philippidou P; Landmesser LT; Silver J
    Cell Rep; 2017 Oct; 21(3):654-665. PubMed ID: 29045834
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord.
    Fouad K; Schnell L; Bunge MB; Schwab ME; Liebscher T; Pearse DD
    J Neurosci; 2005 Feb; 25(5):1169-78. PubMed ID: 15689553
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system.
    Bukhari N; Torres L; Robinson JK; Tsirka SE
    J Neurosci; 2011 Oct; 31(42):14931-43. PubMed ID: 22016526
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system.
    Dyck SM; Karimi-Abdolrezaee S
    Exp Neurol; 2015 Jul; 269():169-87. PubMed ID: 25900055
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Single, high-dose intraspinal injection of chondroitinase reduces glycosaminoglycans in injured spinal cord and promotes corticospinal axonal regrowth after hemisection but not contusion.
    Iseda T; Okuda T; Kane-Goldsmith N; Mathew M; Ahmed S; Chang YW; Young W; Grumet M
    J Neurotrauma; 2008 Apr; 25(4):334-49. PubMed ID: 18373483
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Partial functional recovery after complete spinal cord transection by combined chondroitinase and clenbuterol treatment.
    Bai F; Peng H; Etlinger JD; Zeman RJ
    Pflugers Arch; 2010 Aug; 460(3):657-66. PubMed ID: 20552220
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge.
    Tom VJ; Houlé JD
    Exp Neurol; 2008 May; 211(1):315-9. PubMed ID: 18353313
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of the combination of mesenchymal stromal cells and chondroitinase ABC on chronic spinal cord injury.
    Lee SH; Kim Y; Rhew D; Kuk M; Kim M; Kim WH; Kweon OK
    Cytotherapy; 2015 Oct; 17(10):1374-83. PubMed ID: 26188966
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Scar-mediated inhibition and CSPG receptors in the CNS.
    Sharma K; Selzer ME; Li S
    Exp Neurol; 2012 Oct; 237(2):370-8. PubMed ID: 22836147
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High cervical lateral spinal cord injury results in long-term ipsilateral hemidiaphragm paralysis.
    Vinit S; Gauthier P; Stamegna JC; Kastner A
    J Neurotrauma; 2006 Jul; 23(7):1137-46. PubMed ID: 16866626
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord.
    Steinmetz MP; Horn KP; Tom VJ; Miller JH; Busch SA; Nair D; Silver DJ; Silver J
    J Neurosci; 2005 Aug; 25(35):8066-76. PubMed ID: 16135764
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries.
    Warren PM; Andrews MR; Smith M; Bartus K; Bradbury EJ; Verhaagen J; Fawcett JW; Kwok JCF
    Sci Rep; 2020 Jul; 10(1):11262. PubMed ID: 32647242
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease.
    Fawcett JW
    Prog Brain Res; 2015; 218():213-26. PubMed ID: 25890139
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-frequency epidural stimulation across the respiratory cycle evokes phrenic short-term potentiation after incomplete cervical spinal cord injury.
    Gonzalez-Rothi EJ; Streeter KA; Hanna MH; Stamas AC; Reier PJ; Baekey DM; Fuller DD
    J Neurophysiol; 2017 Oct; 118(4):2344-2357. PubMed ID: 28615341
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Delayed treatment with chondroitinase ABC reverses chronic atrophy of rubrospinal neurons following spinal cord injury.
    Carter LM; McMahon SB; Bradbury EJ
    Exp Neurol; 2011 Mar; 228(1):149-56. PubMed ID: 21215745
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The challenges of respiratory motor system recovery following cervical spinal cord injury.
    Warren PM; Alilain WJ
    Prog Brain Res; 2014; 212():173-220. PubMed ID: 25194199
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury.
    Nori S; Khazaei M; Ahuja CS; Yokota K; Ahlfors JE; Liu Y; Wang J; Shibata S; Chio J; Hettiaratchi MH; Führmann T; Shoichet MS; Fehlings MG
    Stem Cell Reports; 2018 Dec; 11(6):1433-1448. PubMed ID: 30472009
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chondroitinase ABC Administration Facilitates Serotonergic Innervation of Motoneurons in Rats With Complete Spinal Cord Transection.
    Takiguchi M; Miyashita K; Yamazaki K; Funakoshi K
    Front Integr Neurosci; 2022; 16():881632. PubMed ID: 35845919
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Localized Materials-Based Strategy to Non-Virally Deliver Chondroitinase ABC mRNA Improves Hindlimb Function in a Rat Spinal Cord Injury Model.
    Khalil AS; Hellenbrand D; Reichl K; Umhoefer J; Filipp M; Choe J; Hanna A; Murphy WL
    Adv Healthc Mater; 2022 Oct; 11(19):e2200206. PubMed ID: 35882512
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury.
    Xu C; Klaw MC; Lemay MA; Baas PW; Tom VJ
    Exp Neurol; 2015 Jan; 263():172-6. PubMed ID: 25447935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.