These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21755094)

  • 1. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows.
    Sun R; Cubaud T
    Lab Chip; 2011 Sep; 11(17):2924-8. PubMed ID: 21755094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents.
    Abolhasani M; Singh M; Kumacheva E; Günther A
    Lab Chip; 2012 May; 12(9):1611-8. PubMed ID: 22415755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial microfluidic dissolution regime of CO2 bubbles in viscous oils.
    Sauzade M; Cubaud T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):051001. PubMed ID: 24329206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structuring bubbles and foams in gelatine solutions within a circular microchannel device.
    Skurtys O; Aguilera JM
    J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-controlled 'breathing' of carbon dioxide bubbles.
    Tumarkin E; Nie Z; Park JI; Abolhasani M; Greener J; Sherwood-Lollar B; Günther A; Kumacheva E
    Lab Chip; 2011 Oct; 11(20):3545-50. PubMed ID: 21869987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel.
    Shim S; Wan J; Hilgenfeldt S; Panchal PD; Stone HA
    Lab Chip; 2014 Jul; 14(14):2428-36. PubMed ID: 24874437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbubble generation in a co-flow device operated in a new regime.
    Castro-Hernández E; van Hoeve W; Lohse D; Gordillo JM
    Lab Chip; 2011 Jun; 11(12):2023-9. PubMed ID: 21431188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions).
    Kiuru HJ
    Water Sci Technol; 2001; 43(8):1-7. PubMed ID: 11394261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of disproportionation of air bubbles beneath a planar air-water interface stabilized by food proteins.
    Dickinson E; Ettelaie R; Murray BS; Du Z
    J Colloid Interface Sci; 2002 Aug; 252(1):202-13. PubMed ID: 16290780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pressure drop along rectangular microchannels containing bubbles.
    Fuerstman MJ; Lai A; Thurlow ME; Shevkoplyas SS; Stone HA; Whitesides GM
    Lab Chip; 2007 Nov; 7(11):1479-89. PubMed ID: 17960275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of gas bubble growth in a supersaturated solution with Sievert's solubility law.
    Gor GY; Kuchma AE
    J Chem Phys; 2009 Jul; 131(3):034507. PubMed ID: 19624209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixing enhancement for high viscous fluids in a microfluidic chamber.
    Wang S; Huang X; Yang C
    Lab Chip; 2011 Jun; 11(12):2081-7. PubMed ID: 21547315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropumping of liquid by directional growth and selective venting of gas bubbles.
    Meng DD; Kim CJ
    Lab Chip; 2008 Jun; 8(6):958-68. PubMed ID: 18497918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution process of a single bubble under pressure with a large-density-ratio multicomponent multiphase lattice Boltzmann model.
    He X; Zhang J; Yang Q; Peng H; Xu W
    Phys Rev E; 2020 Dec; 102(6-1):063306. PubMed ID: 33466071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heterogeneous structure and diffusion permeability of body tissues on decompression gas bubble dynamics.
    Nikolaev VP
    Aviat Space Environ Med; 2000 Jul; 71(7):723-9. PubMed ID: 10902936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.