These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 21755094)
41. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles. Zhao Y; Cho SK Lab Chip; 2007 Feb; 7(2):273-80. PubMed ID: 17268631 [TBL] [Abstract][Full Text] [Related]
42. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells. Zheng W; Wang Z; Zhang W; Jiang X Lab Chip; 2010 Nov; 10(21):2906-10. PubMed ID: 20844778 [TBL] [Abstract][Full Text] [Related]
43. Intraalveolar bubbles and bubble films. I. formation and development during the first 48 hours of extrauterine life in rabbits. Scarpelli EM; Mautone AJ; Chinoy MR Anat Rec; 1996 Mar; 244(3):344-57. PubMed ID: 8742699 [TBL] [Abstract][Full Text] [Related]
44. Bubble snap-off and capillary-back pressure during counter-current spontaneous imbibition into model pores. Unsal E; Mason G; Morrow NR; Ruth DW Langmuir; 2009 Apr; 25(6):3387-95. PubMed ID: 19228030 [TBL] [Abstract][Full Text] [Related]
45. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents. Lefortier SG; Hamersma PJ; Bardow A; Kreutzer MT Lab Chip; 2012 Sep; 12(18):3387-91. PubMed ID: 22782522 [TBL] [Abstract][Full Text] [Related]
46. Study on the bubble transport mechanism in an acoustic standing wave field. Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064 [TBL] [Abstract][Full Text] [Related]
47. Diffusive spreading of time-dependent pressures in elastic microfluidic devices. Wunderlich BK; Klessinger UA; Bausch AR Lab Chip; 2010 Apr; 10(8):1025-9. PubMed ID: 20358110 [TBL] [Abstract][Full Text] [Related]
48. Mass transfer from gas bubbles to impinging flow of biological fluids with chemical reaction. Yang WJ; Echigo R; Wotton DR; Ou JW; Hwang JB Biophys J; 1972 Nov; 12(11):1391-404. PubMed ID: 4642218 [TBL] [Abstract][Full Text] [Related]
49. A fully dynamical theory for the rate of arterial gas embolism growth and dissolution. Goldman S Math Biosci; 2022 Mar; 345():108793. PubMed ID: 35167830 [TBL] [Abstract][Full Text] [Related]
50. Promotion of oxygen transfer in three-phase fluidized-bed bioreactors by floating bubble breakers. Kang Y; Fan LT; Min BT; Kim SD Biotechnol Bioeng; 1991 Mar; 37(6):580-6. PubMed ID: 18600647 [TBL] [Abstract][Full Text] [Related]
51. Development and interactions of two inert gas bubbles during decompression. Jiang Y; Homer LD; Thalmann ED Undersea Hyperb Med; 1996 Sep; 23(3):131-40. PubMed ID: 8931280 [TBL] [Abstract][Full Text] [Related]
52. 'Bubble chamber model' of fast atom bombardment induced processes. Kosevich MV; Shelkovsky VS; Boryak OA; Orlov VV Rapid Commun Mass Spectrom; 2003; 17(15):1781-92. PubMed ID: 12872284 [TBL] [Abstract][Full Text] [Related]
53. Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics. Pereiro I; Fomitcheva Khartchenko A; Petrini L; Kaigala GV Lab Chip; 2019 Jul; 19(14):2296-2314. PubMed ID: 31168556 [TBL] [Abstract][Full Text] [Related]
54. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer. Lim HJ; Chang KA; Su CB; Chen CY Rev Sci Instrum; 2008 Dec; 79(12):125105. PubMed ID: 19123590 [TBL] [Abstract][Full Text] [Related]
55. Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Chong ZZ; Tor SB; Loh NH; Wong TN; Gañán-Calvo AM; Tan SH; Nguyen NT Lab Chip; 2015 Feb; 15(4):996-9. PubMed ID: 25510843 [TBL] [Abstract][Full Text] [Related]
56. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries. Hashimoto M; Shevkoplyas SS; Zasońska B; Szymborski T; Garstecki P; Whitesides GM Small; 2008 Oct; 4(10):1795-805. PubMed ID: 18819139 [TBL] [Abstract][Full Text] [Related]
57. Effective pressure and bubble generation in a microfluidic T-junction. Wang AB; Lin IC; Hsieh YW; Shih WP; Wu GW Lab Chip; 2011 Oct; 11(20):3499-507. PubMed ID: 21879103 [TBL] [Abstract][Full Text] [Related]
58. Direct volumetric measurement of gas oversolubility in nanoliquids: beyond Henry's law. Pera-Titus M; El-Chahal R; Rakotovao V; Daniel C; Miachon S; Dalmon JA Chemphyschem; 2009 Aug; 10(12):2082-9. PubMed ID: 19691041 [TBL] [Abstract][Full Text] [Related]
59. Anomalous Capillary Pressure, Stress, and Stability of Solids-Coated Bubbles. Kam SI; Rossen WR J Colloid Interface Sci; 1999 May; 213(2):329-339. PubMed ID: 10222072 [TBL] [Abstract][Full Text] [Related]
60. Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble. Kanyanee T; Borst WL; Jakmunee J; Grudpan K; Li J; Dasgupta PK Anal Chem; 2006 Apr; 78(8):2786-93. PubMed ID: 16615794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]