These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21755319)

  • 21. Surgical aspects of spinal growth modulation in scoliosis correction.
    Jain V; Lykissas M; Trobisch P; Wall EJ; Newton PO; Sturm PF; Cahill PJ; Bylski-Austrow DI
    Instr Course Lect; 2014; 63():335-44. PubMed ID: 24720319
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induced pressures on the epiphyseal growth plate with non segmental anterior spine tethering.
    Lalande V; Villemure I; Parent S; Aubin CÉ
    Spine Deform; 2020 Aug; 8(4):585-589. PubMed ID: 32096137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local Epiphyseal Growth Modulation for the Early Treatment of Progressive Scoliosis: Experimental Validation Using a Porcine Model.
    Hachem B; Aubin CE; Parent S
    Spine (Phila Pa 1976); 2016 Sep; 41(17):E1009-E1015. PubMed ID: 26863259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of vertebral body stapling on spine biomechanics and structure using a bovine model.
    Sunni N; Askin GN; Labrom RD; Izatt MT; Pearcy MJ; Adam CJ
    Clin Biomech (Bristol, Avon); 2020 Apr; 74():73-78. PubMed ID: 32145672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis: preliminary results.
    Lalonde NM; Aubin CE; Pannetier R; Villemure I
    Stud Health Technol Inform; 2008; 140():111-5. PubMed ID: 18810010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patient-specific finite element modeling of scoliotic curve progression using region-specific stress-modulated vertebral growth.
    D'Andrea CR; Samdani AF; Balasubramanian S
    Spine Deform; 2023 May; 11(3):525-534. PubMed ID: 36593421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method to include the gravitational forces in a finite element model of the scoliotic spine.
    Clin J; Aubin CÉ; Lalonde N; Parent S; Labelle H
    Med Biol Eng Comput; 2011 Aug; 49(8):967-77. PubMed ID: 21728065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid-shape memory alloy staple.
    Braun JT; Akyuz E; Udall H; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 Feb; 31(3):262-8. PubMed ID: 16449897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel scoliosis instrumentation using special superelastic nickel-titanium shape memory rods: a biomechanical analysis using a calibrated computer model and data from a clinical trial.
    Wang X; Yeung K; Cheung JPY; Lau JY; Qi W; Cheung KM; Aubin CE
    Spine Deform; 2020 Jun; 8(3):369-379. PubMed ID: 32096138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis.
    Braun JT; Akyuz E; Ogilvie JW; Bachus KN
    J Bone Joint Surg Am; 2005 Sep; 87(9):2038-51. PubMed ID: 16140820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anterior instrumentation (dual screws single rod system) for the surgical treatment of idiopathic scoliosis in the lumbar area: a prospective study on 33 adolescents and young adults, based on a new system of classification.
    Maurice B
    Eur Spine J; 2013 Mar; 22 Suppl 2(Suppl 2):S149-63. PubMed ID: 22644435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of spinal concave-convex biases in the progression of idiopathic scoliosis.
    Driscoll M; Aubin CE; Moreau A; Villemure I; Parent S
    Eur Spine J; 2009 Feb; 18(2):180-7. PubMed ID: 19130096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anterior Vertebral Body Growth Modulation: Assessment of the 2-year Predictive Capability of a Patient-specific Finite-element Planning Tool and of the Growth Modulation Biomechanics.
    Cobetto N; Aubin CE; Parent S
    Spine (Phila Pa 1976); 2020 Sep; 45(18):E1203-E1209. PubMed ID: 32341305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclically controlled vertebral body tethering for scoliosis: an in vivo verification in a pig model of the pressure exerted on vertebral end plates.
    Lalande V; Villemure I; Vonthron M; Parent S; Aubin CÉ
    Spine Deform; 2020 Feb; 8(1):39-44. PubMed ID: 31981151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical modeling of posterior instrumentation of the scoliotic spine.
    Aubin CE; Petit Y; Stokes IA; Poulin F; Gardner-Morse M; Labelle H
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):27-32. PubMed ID: 12623435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A stability-based model of a growing spine with adolescent idiopathic scoliosis: A combination of musculoskeletal and finite element approaches.
    Kamal Z; Rouhi G; Arjmand N; Adeeb S
    Med Eng Phys; 2019 Feb; 64():46-55. PubMed ID: 30638786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis.
    Martino J; Aubin CE; Labelle H; Wang X; Parent S
    Spine (Phila Pa 1976); 2013 Jan; 38(2):E73-83. PubMed ID: 23124259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biomechanical investigation of vertebral staples for fusionless scoliosis correction.
    Shillington MP; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):445-51. PubMed ID: 21316129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical Simulation of Stresses and Strains Exerted on the Spinal Cord and Nerves During Scoliosis Correction Maneuvers.
    Henao J; Labelle H; Arnoux PJ; Aubin CÉ
    Spine Deform; 2018 Jan; 6(1):12-19. PubMed ID: 29287811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biomechanical assessment of thoracic spine stapling.
    Puttlitz CM; Masaru F; Barkley A; Diab M; Acaroglu E
    Spine (Phila Pa 1976); 2007 Apr; 32(7):766-71. PubMed ID: 17414910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.