These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 21755416)
1. Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: preliminary study. Kamiya N; Zhou X; Chen H; Muramatsu C; Hara T; Yokoyama R; Kanematsu M; Hoshi H; Fujita H Radiol Phys Technol; 2012 Jan; 5(1):5-14. PubMed ID: 21755416 [TBL] [Abstract][Full Text] [Related]
2. Automated recognition of the psoas major muscles on X-ray CT images. Kamiya N; Zhou X; Chen H; Hara T; Hoshi H; Yokoyama R; Kanematsu M; Fujita H Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3557-60. PubMed ID: 19963589 [TBL] [Abstract][Full Text] [Related]
3. Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Hashimoto F; Kakimoto A; Ota N; Ito S; Nishizawa S Radiol Phys Technol; 2019 Jun; 12(2):210-215. PubMed ID: 30937726 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a reliable method for automated measurements of psoas muscle volume in CT scans using deep learning-based segmentation: a cross-sectional study. Choi W; Kim CH; Yoo H; Yun HR; Kim DW; Kim JW BMJ Open; 2024 May; 14(5):e079417. PubMed ID: 38777592 [TBL] [Abstract][Full Text] [Related]
5. Automated segmentation of recuts abdominis muscle using shape model in X-ray CT images. Kamiya N; Zhou X; Chen H; Muramatsu C; Hara T; Yokoyama R; Kanematsu M; Hoshi H; Fujita H Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7993-6. PubMed ID: 22256195 [TBL] [Abstract][Full Text] [Related]
6. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
7. Fully automated deep-learning section-based muscle segmentation from CT images for sarcopenia assessment. Islam S; Kanavati F; Arain Z; Da Costa OF; Crum W; Aboagye EO; Rockall AG Clin Radiol; 2022 May; 77(5):e363-e371. PubMed ID: 35260232 [TBL] [Abstract][Full Text] [Related]
8. Automated major psoas muscle volumetry in computed tomography using machine learning algorithms. Duong F; Gadermayr M; Merhof D; Kuhl C; Bruners P; Loosen SH; Roderburg C; Truhn D; Schulze-Hagen MF Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):355-361. PubMed ID: 34928445 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional numerical schemes for the segmentation of the psoas muscle in X-ray computed tomography images. Paolucci G; Cama I; Campi C; Piana M BMC Med Imaging; 2024 Sep; 24(1):251. PubMed ID: 39300334 [TBL] [Abstract][Full Text] [Related]
10. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
11. Muscle mass estimation on breast magnetic resonance imaging in breast cancer patients: comparison between psoas muscle area on computer tomography and pectoralis muscle area on MRI. Rossi F; Valdora F; Barabino E; Calabrese M; Tagliafico AS Eur Radiol; 2019 Feb; 29(2):494-500. PubMed ID: 30088069 [TBL] [Abstract][Full Text] [Related]
12. Computed tomography-based psoas skeletal muscle area and radiodensity are poor sentinels for whole L3 skeletal muscle values. Rollins KE; Gopinath A; Awwad A; Macdonald IA; Lobo DN Clin Nutr; 2020 Jul; 39(7):2227-2232. PubMed ID: 31668722 [TBL] [Abstract][Full Text] [Related]
13. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration. Sun K; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA Med Phys; 2016 Mar; 43(3):1487-500. PubMed ID: 26936732 [TBL] [Abstract][Full Text] [Related]
14. Automated segmentation of mammary gland regions in non-contrast X-ray CT images. Zhou X; Han M; Hara T; Fujita H; Sugisaki K; Chen H; Lee G; Yokoyama R; Kanematsu M; Hoshi H Comput Med Imaging Graph; 2008 Dec; 32(8):699-709. PubMed ID: 18849142 [TBL] [Abstract][Full Text] [Related]
15. Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition. Liu T; Udupa JK; Miao Q; Tong Y; Torigian DA Med Phys; 2019 Mar; 46(3):1272-1285. PubMed ID: 30614020 [TBL] [Abstract][Full Text] [Related]
16. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Caballo M; Boone JM; Mann R; Sechopoulos I Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025 [TBL] [Abstract][Full Text] [Related]
17. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT. Cheimariotis GA; Al-Mashat M; Haris K; Aletras AH; Jögi J; Bajc M; Maglaveras N; Heiberg E Ann Nucl Med; 2018 Feb; 32(2):94-104. PubMed ID: 29236220 [TBL] [Abstract][Full Text] [Related]
18. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network. Bae HJ; Hyun H; Byeon Y; Shin K; Cho Y; Song YJ; Yi S; Kuh SU; Yeom JS; Kim N Comput Methods Programs Biomed; 2020 Feb; 184():105119. PubMed ID: 31627152 [TBL] [Abstract][Full Text] [Related]
19. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model. Gan Y; Xia Z; Xiong J; Zhao Q; Hu Y; Zhang J Med Phys; 2015 Jan; 42(1):14-27. PubMed ID: 25563244 [TBL] [Abstract][Full Text] [Related]
20. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]