BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21755472)

  • 1. Hormonal Repression of miRNA Biosynthesis Through a Nuclear Steroid Hormone Receptor.
    Fujiyama-Nakamura S; Yamagata K; Kato S
    Adv Exp Med Biol; 2011; 700():43-55. PubMed ID: 21755472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormonal repression of miRNA biosynthesis through a nuclear steroid hormone receptor.
    Fujiyama-Nakamura S; Yamagata K; Kato S
    Adv Exp Med Biol; 2010; 700():43-55. PubMed ID: 21627029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulges control pri-miRNA processing in a position and strand-dependent manner.
    Li S; Le TN; Nguyen TD; Trinh TA; Nguyen TA
    RNA Biol; 2021 Nov; 18(11):1716-1726. PubMed ID: 33382955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.
    Roth BM; Ishimaru D; Hennig M
    J Biol Chem; 2013 Sep; 288(37):26785-99. PubMed ID: 23893406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary microRNA processing assay reconstituted using recombinant Drosha and DGCR8.
    Barr I; Guo F
    Methods Mol Biol; 2014; 1095():73-86. PubMed ID: 24166303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing.
    Liu H; Liang C; Kollipara RK; Matsui M; Ke X; Jeong BC; Wang Z; Yoo KS; Yadav GP; Kinch LN; Grishin NV; Nam Y; Corey DR; Kittler R; Liu Q
    Mol Cell; 2016 Aug; 63(3):420-32. PubMed ID: 27425409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage.
    Tu CC; Zhong Y; Nguyen L; Tsai A; Sridevi P; Tarn WY; Wang JY
    Sci Signal; 2015 Jun; 8(383):ra64. PubMed ID: 26126715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoregulatory mechanisms controlling the microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2011; 700():56-66. PubMed ID: 21755473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Anatomy of the Human Microprocessor.
    Nguyen TA; Jo MH; Choi YG; Park J; Kwon SC; Hohng S; Kim VN; Woo JS
    Cell; 2015 Jun; 161(6):1374-87. PubMed ID: 26027739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tankyrase promotes primary precursor miRNA processing to precursor miRNA.
    Mizutani A; Seimiya H
    Biochem Biophys Res Commun; 2020 Feb; 522(4):945-951. PubMed ID: 31806370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting.
    Herbert KM; Sarkar SK; Mills M; Delgado De la Herran HC; Neuman KC; Steitz JA
    RNA; 2016 Feb; 22(2):175-83. PubMed ID: 26683315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes.
    Bellemer C; Bortolin-Cavaillé ML; Schmidt U; Jensen SM; Kjems J; Bertrand E; Cavaillé J
    J Cell Sci; 2012 Jun; 125(Pt 11):2709-20. PubMed ID: 22393237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoregulatory mechanisms controlling the Microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2010; 700():56-66. PubMed ID: 21627030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
    Yeom KH; Lee Y; Han J; Suh MR; Kim VN
    Nucleic Acids Res; 2006; 34(16):4622-9. PubMed ID: 16963499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-transcriptional control of DGCR8 expression by the Microprocessor.
    Triboulet R; Chang HM; Lapierre RJ; Gregory RI
    RNA; 2009 Jun; 15(6):1005-11. PubMed ID: 19383765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DGCR8-dependent efficient pri-miRNA processing of human pri-miR-9-2.
    Nogami M; Miyamoto K; Hayakawa-Yano Y; Nakanishi A; Yano M; Okano H
    J Biol Chem; 2021; 296():100409. PubMed ID: 33581109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Clustering Facilitates Nuclear Processing of Suboptimal Pri-miRNA Loci.
    Shang R; Baek SC; Kim K; Kim B; Kim VN; Lai EC
    Mol Cell; 2020 Apr; 78(2):303-316.e4. PubMed ID: 32302542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of the Caenorhabditis elegans Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Nguyen TA
    Nucleic Acids Res; 2023 Feb; 51(4):1512-1527. PubMed ID: 36598924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA biogenesis: isolation and characterization of the microprocessor complex.
    Gregory RI; Chendrimada TP; Shiekhattar R
    Methods Mol Biol; 2006; 342():33-47. PubMed ID: 16957365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.