These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2175550)

  • 21. Modification of phospholipid environment in sarcoplasmic reticulum using nonspecific phospholipid transfer protein.
    Lunardi J; DeFoor P; Fleischer S
    Methods Enzymol; 1988; 157():369-77, 693. PubMed ID: 3068479
    [No Abstract]   [Full Text] [Related]  

  • 22. Uptake and phosphorylation of phosphatidylinositol by rat liver nuclei. Role of phosphatidylinositol transfer protein.
    Capitani S; Helms B; Mazzoni M; Previati M; Bertagnolo V; Wirtz KW; Manzoli FA
    Biochim Biophys Acta; 1990 May; 1044(2):193-200. PubMed ID: 2344439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced phosphorylation of myocardial sarcoplasmic reticulum in experimental hyperthyroidism.
    Limas CJ
    Am J Physiol; 1978 Apr; 234(4):H426-31. PubMed ID: 206150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mammalian phosphatidylinositol transfer proteins: emerging roles in signal transduction and vesicular traffic.
    Cockcroft S
    Chem Phys Lipids; 1999 Apr; 98(1-2):23-33. PubMed ID: 10358925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alterations in phospholipid N-methylation of cardiac subcellular membranes due to experimentally induced diabetes in rats.
    Panagia V; Taira Y; Ganguly PK; Tung S; Dhalla NS
    J Clin Invest; 1990 Sep; 86(3):777-84. PubMed ID: 2144301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the kinetic effects of phospholamban phosphorylation and anti-phospholamban monoclonal antibody on the calcium pump in purified cardiac sarcoplasmic reticulum membranes.
    Antipenko AY; Spielman AI; Sassaroli M; Kirchberger MA
    Biochemistry; 1997 Oct; 36(42):12903-10. PubMed ID: 9335549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of sarcoplasmic reticulum during cardiac myogenesis.
    Pegg W; Michalak M
    Am J Physiol; 1987 Jan; 252(1 Pt 2):H22-31. PubMed ID: 3028162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [ATP-dependent transport of Ca2+ in myocardium sarcolemma vesicles and its activation by phorbol esters].
    Kurskiĭ MD; Kocherga VI; Nesterenko NV; Vorobets ZD; Kurchenko LK
    Biokhimiia; 1988 Jun; 53(6):960-4. PubMed ID: 2972323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental changes in phosphatidylinositol transfer protein concentration and phospholipid transfer activities in rat type II cells.
    Viscardi RM; Strauss KA
    Exp Lung Res; 1999; 25(7):561-76. PubMed ID: 10598318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative biochemical study of sarcolemma and sarcoplasmic reticulum fractions isolated from mouse skeletal and cardiac muscles.
    Lucas-Heron B; Loirat MJ; Ollivier B
    Comp Biochem Physiol B; 1987; 88(2):421-7. PubMed ID: 3427893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sterol carrier protein-2 functions in phosphatidylinositol transfer and signaling.
    Schroeder F; Zhou M; Swaggerty CL; Atshaves BP; Petrescu AD; Storey SM; Martin GG; Huang H; Helmkamp GM; Ball JM
    Biochemistry; 2003 Mar; 42(11):3189-202. PubMed ID: 12641450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [ATP-dependent calcium transport in the sarcoplasmic reticulum of the myocardium during vitamin E deficiency in the rat diet].
    Gubskiĭ IuI; Kalinskiĭ MI; Rudnitskaia ND; Zadorina OV; Kurskiĭ MD
    Ukr Biokhim Zh (1978); 1988; 60(3):46-51. PubMed ID: 2842907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myocardial amino acid transport by canine sarcolemma vesicles.
    Young LH; Zaret BL; Barrett EJ
    Am J Physiol; 1987 Jun; 252(6 Pt 2):H1070-6. PubMed ID: 3035946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quench-flow measurements of initial rates of Ca2+ accumulation by isolated cardiac sarcoplasmic reticulum.
    Will H; Blanck J; Smettan G; Wollenberger A
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():199-204. PubMed ID: 201981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patent and latent activities of cardiac membrane vesicles: distinctions between proteins of sarcolemma and sarcoplasmic reticulum.
    Besch HR; Jones LR
    Adv Myocardiol; 1980; 1():123-38. PubMed ID: 6248930
    [No Abstract]   [Full Text] [Related]  

  • 36. Phosphatidylinositol transfer proteins: structure, catalytic activity, and physiological function.
    Helmkamp GM
    Chem Phys Lipids; 1985 Aug; 38(1-2):3-16. PubMed ID: 2998636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of polyphosphoinositides in transverse tubule and sarcoplasmic reticulum membranes of frog skeletal muscle.
    Asotra K; Lagos N; Vergara J
    Biochim Biophys Acta; 1991 Jan; 1081(2):229-37. PubMed ID: 1847832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the relationship between the dual specificity of the bovine brain phosphatidylinositol transfer protein and membrane phosphatidylinositol levels.
    Van Paridon PA; Gadella TW; Somerharju PJ; Wirtz KW
    Biochim Biophys Acta; 1987 Sep; 903(1):68-77. PubMed ID: 3651458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of protein kinase modulator on cAMP-dependent protein kinase-catalyzed phosphorylation of phospholamban and stimulation of calcium transport in cardiac sarcoplasmic reticulum.
    Ohmori F; Tada M; Kinoshita N; Matsuo H; Sakakibara H
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():279-84. PubMed ID: 201986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [3':5'-AMP-dependent phosphorylation of muscular membrane proteins and calcium transport].
    Kurskiĭ MD; Kondratiuk TP
    Ukr Biokhim Zh (1978); 1980; 52(4):525-38. PubMed ID: 6259790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.