BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21755775)

  • 21. Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation.
    Natali AN; Audenino AL; Artibani W; Fontanella CG; Carniel EL; Zanetti EM
    J Biomech; 2015 Sep; 48(12):3088-96. PubMed ID: 26253759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the anisotropic mechanical behaviour of colonic tissues: experimental activity and constitutive formulation.
    Carniel EL; Gramigna V; Fontanella CG; Frigo A; Stefanini C; Rubini A; Natali AN
    Exp Physiol; 2014 May; 99(5):759-71. PubMed ID: 24486449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental investigation of the biomechanics of urethral tissues and structures.
    Natali AN; Carniel EL; Frigo A; Pavan PG; Todros S; Pachera P; Fontanella CG; Rubini A; Cavicchioli L; Avital Y; De Benedictis GM
    Exp Physiol; 2016 May; 101(5):641-56. PubMed ID: 26864993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implementation and validation of constitutive relations for human dermis mechanical response.
    Aldieri A; Terzini M; Bignardi C; Zanetti EM; Audenino AL
    Med Biol Eng Comput; 2018 Nov; 56(11):2083-2093. PubMed ID: 29777504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical Behaviour of Plantar Adipose Tissue: From Experimental Tests to Constitutive Analysis.
    Pettenuzzo S; Belluzzi E; Pozzuoli A; Macchi V; Porzionato A; Boscolo-Berto R; Ruggieri P; Berardo A; Carniel EL; Fontanella CG
    Bioengineering (Basel); 2023 Dec; 11(1):. PubMed ID: 38247919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo biomechanical behavior of the human heel pad during the stance phase of gait.
    Gefen A; Megido-Ravid M; Itzchak Y
    J Biomech; 2001 Dec; 34(12):1661-5. PubMed ID: 11716870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the structural behaviour of colonic segments by inflation tests: Experimental activity and physio-mechanical model.
    Carniel EL; Mencattelli M; Bonsignori G; Fontanella CG; Frigo A; Rubini A; Stefanini C; Natali AN
    Proc Inst Mech Eng H; 2015 Nov; 229(11):794-803. PubMed ID: 26396226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the calcaneal heel pad and polymeric shock absorbers in attenuation of heel strike impact.
    Noe DA; Voto SJ; Hoffmann MS; Askew MJ; Gradisar IA
    J Biomed Eng; 1993 Jan; 15(1):23-6. PubMed ID: 8419676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An inverse finite-element model of heel-pad indentation.
    Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR
    J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical behavior of pericardial human tissue: a constitutive formulation.
    Pavan PG; Pachera P; Tiengo C; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):926-34. PubMed ID: 25224743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Material properties of the heel fat pad across strain rates.
    Grigoriadis G; Newell N; Carpanen D; Christou A; Bull AMJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():398-407. PubMed ID: 27643676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the biomechanical behaviour of hindfoot ligaments.
    Forestiero A; Carniel EL; Venturato C; Natali AN
    Proc Inst Mech Eng H; 2013 Jun; 227(6):683-92. PubMed ID: 23636750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Foot strike and the properties of the human heel pad.
    Ker RF; Bennett MB; Alexander RM; Kester RC
    Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints.
    Venturato C; Pavan PG; Forestiero A; Carniel EL; Natali AN
    Acta Bioeng Biomech; 2014; 16(2):57-65. PubMed ID: 25088586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.