BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21755927)

  • 1. Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers.
    Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    Nano Lett; 2011 Aug; 11(8):3341-5. PubMed ID: 21755927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photoluminescence of silicon quantum dots in the presence of both energy transfer enhancement and emission enhancement mechanisms assisted by the double plasmon modes of gold nanorods.
    Cao J; Zhang H; Pi X; Li D; Yang D
    Nanoscale Adv; 2021 Aug; 3(16):4810-4815. PubMed ID: 36134309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.
    Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV
    ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer in colloidal CdTe quantum dot nanoclusters.
    Higgins C; Lunz M; Bradley AL; Gerard VA; Byrne S; Gun'ko YK; Lesnyak V; Gaponik N
    Opt Express; 2010 Nov; 18(24):24486-94. PubMed ID: 21164795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon coupling effects on the förster resonance energy transfer from quantum dot into rhodamine 6G.
    Chen CY; Ni CC; Wu RN; Kuo SY; Li CH; Kiang YW; Yang CC
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33848997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-quantum dot based Förster resonant energy transfer: key parameters for high-efficiency biosensing.
    Hottechamps J; Noblet T; Méthivier C; Boujday S; Dreesen L
    Nanoscale; 2023 Feb; 15(6):2614-2623. PubMed ID: 36648212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.
    Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB
    Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well.
    Murphy GP; Gough JJ; Higgins LJ; Karanikolas VD; Wilson KM; Garcia Coindreau JA; Zubialevich VZ; Parbrook PJ; Bradley AL
    Nanotechnology; 2017 Mar; 28(11):115401. PubMed ID: 28140370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.
    Kotresh MG; Inamdar LS; Shivkumar MA; Adarsh KS; Jagatap BN; Mulimani BG; Advirao GM; Inamdar SR
    Luminescence; 2017 Jun; 32(4):631-639. PubMed ID: 27808463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): Application for immunoassay.
    Goryacheva OA; Beloglazova NV; Vostrikova AM; Pozharov MV; Sobolev AM; Goryacheva IY
    Talanta; 2017 Mar; 164():377-385. PubMed ID: 28107944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer.
    Higgins LJ; Marocico CA; Karanikolas VD; Bell AP; Gough JJ; Murphy GP; Parbrook PJ; Bradley AL
    Nanoscale; 2016 Oct; 8(42):18170-18179. PubMed ID: 27740658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced charge carrier dynamics in a ZnSe quantum dot-attached CdTe system.
    Saeed S; Iqbal A; Iqbal A
    Proc Math Phys Eng Sci; 2020 Mar; 476(2235):20190616. PubMed ID: 32269486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Dot Donor-Polymer Acceptor Architecture for a FRET-Enabled Solar Cell.
    Kokal RK; Raavi SSK; Deepa M
    ACS Appl Mater Interfaces; 2019 May; 11(20):18395-18403. PubMed ID: 31045337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Förster resonance energy transfer on layered metal-dielectric hyperbolic metamaterials: an excellent platform for low-threshold laser action.
    Shih CT; Chao YC; Shen JL; Chen YF
    Opt Express; 2023 Apr; 31(8):12669-12679. PubMed ID: 37157422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis and photophysical characterization of luminescent CdTe quantum dots for Forster resonance energy transfer based immunosensing of staphylococcal enterotoxin B.
    Vinayaka AC; Thakur MS
    Luminescence; 2013; 28(6):827-35. PubMed ID: 23192990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.