These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21755927)

  • 21. A molecularly imprinted polymer-coated CdTe quantum dot nanocomposite for tryptophan recognition based on the Förster resonance energy transfer process.
    Tirado-Guizar A; Paraguay-Delgado F; Pina-Luis GE
    Methods Appl Fluoresc; 2016 Nov; 4(4):045003. PubMed ID: 28192306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical redox modulation of the surface chemistry of CdTe quantum dots for probing ascorbic acid in biological fluids.
    Chen YJ; Yan XP
    Small; 2009 Sep; 5(17):2012-8. PubMed ID: 19444852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence Quenching of CdTe Nanocrystals by Bound Gold Nanoparticles in Aqueous Solution.
    Zhang J; Badugu R; Lakowicz JR
    Plasmonics; 2008 Mar; 3(1):3-11. PubMed ID: 19890452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Very High Brightness Quantum Dot Light-Emitting Devices via Enhanced Energy Transfer from a Phosphorescent Sensitizer.
    Zamani Siboni H; Sadeghimakki B; Sivoththaman S; Aziz H
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25828-34. PubMed ID: 26556102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model-Free Estimation of Energy-Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamine 6G FRET Couple.
    Bharadwaj K; Koley S; Jana S; Ghosh S
    Chem Asian J; 2018 Nov; 13(21):3296-3303. PubMed ID: 30178522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols.
    Jiménez-López J; Rodrigues SSM; Ribeiro DSM; Ortega-Barrales P; Ruiz-Medina A; Santos JLM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():246-254. PubMed ID: 30641365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate.
    Guo J; Zhang Y; Luo Y; Shen F; Sun C
    Talanta; 2014 Jul; 125():385-92. PubMed ID: 24840461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.
    Kotresh MG; Adarsh KS; Shivkumar MA; Mulimani BG; Savadatti MI; Inamdar SR
    Luminescence; 2016 May; 31(3):760-8. PubMed ID: 26333828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of Optically Encoded Microbeads with FRET-Free Spatially Separated Quantum-Dot Layers for Multiplexed Assays.
    Bilan RS; Krivenkov VA; Berestovoy MA; Efimov AE; Agapov II; Samokhvalov PS; Nabiev I; Sukhanova A
    Chemphyschem; 2017 Apr; 18(8):970-979. PubMed ID: 28194871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.
    Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D
    Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.
    Qiao Y; Polzer F; Kirmse H; Steeg E; Kühn S; Friede S; Kirstein S; Rabe JP
    ACS Nano; 2015 Feb; 9(2):1552-60. PubMed ID: 25555126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing.
    Xing H; Wei T; Lin X; Dai Z
    Anal Chim Acta; 2018 Dec; 1042():71-78. PubMed ID: 30428990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye.
    Díaz SA; Lasarte Aragonés G; Buckhout-White S; Qiu X; Oh E; Susumu K; Melinger JS; Huston AL; Hildebrandt N; Medintz IL
    J Phys Chem Lett; 2017 May; 8(10):2182-2188. PubMed ID: 28467088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Surface Plasmon Coupling on the Color Conversion of an InGaN/GaN Quantum-Well Structure into Colloidal Quantum Dots Inserted into a Nearby Porous Structure.
    Yang S; Feng HY; Lin YS; Chen WC; Kuo Y; Yang CCC
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.