BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 21756138)

  • 1. Ice cooling vest on tolerance for exercise under uncompensable heat stress.
    Kenny GP; Schissler AR; Stapleton J; Piamonte M; Binder K; Lynn A; Lan CQ; Hardcastle SG
    J Occup Environ Hyg; 2011 Aug; 8(8):484-91. PubMed ID: 21756138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat strain attenuation while wearing NBC clothing: dry-ice vest compared to water spray.
    Heled Y; Epstein Y; Moran DS
    Aviat Space Environ Med; 2004 May; 75(5):391-6. PubMed ID: 15152890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of forearm vs. leg submersion in work tolerance time in a hot environment while wearing firefighter protective clothing.
    Katica CP; Pritchett RC; Pritchett KL; Del Pozzi AT; Balilionis G; Burnham T
    J Occup Environ Hyg; 2011 Aug; 8(8):473-7. PubMed ID: 21756136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of air and liquid cooling during light and heavy exercise while wearing NBC clothing.
    McLellan TM; Frim J; Bell DG
    Aviat Space Environ Med; 1999 Aug; 70(8):802-11. PubMed ID: 10447055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent microclimate cooling during exercise-heat stress in US army chemical protective clothing.
    Cadarette BS; Cheuvront SN; Kolka MA; Stephenson LA; Montain SJ; Sawka MN
    Ergonomics; 2006 Feb; 49(2):209-19. PubMed ID: 16484146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a novel ice-cooling technique on work in protective clothing at 28 degrees C, 23 degrees C, and 18 degrees C WBGTs.
    Muir IH; Bishop PA; Ray P
    Am Ind Hyg Assoc J; 1999; 60(1):96-104. PubMed ID: 10028621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of endurance training and heat acclimation on psychological strain in exercising men wearing protective clothing.
    Aoyagi Y; McLellan TM; Shephard RJ
    Ergonomics; 1998 Mar; 41(3):328-57. PubMed ID: 9520629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of cranial cooling during recovery on subsequent uncompensable heat stress tolerance.
    Wallace PJ; Masbou AT; Petersen SR; Cheung SS
    Appl Physiol Nutr Metab; 2015 Aug; 40(8):811-6. PubMed ID: 26187272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooling vest worn during active warm-up improves 5-km run performance in the heat.
    Arngrïmsson SA; Petitt DS; Stueck MG; Jorgensen DK; Cureton KJ
    J Appl Physiol (1985); 2004 May; 96(5):1867-74. PubMed ID: 14698992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat strain while wearing the current Canadian or a new hot-weather French NBC protective clothing ensemble.
    McLellan TM
    Aviat Space Environ Med; 1996 Nov; 67(11):1057-62. PubMed ID: 8908344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of Physiological Strain Under a Hot and Humid Environment by a Hybrid Cooling Vest.
    Chan APC; Yang Y; Wong FKW; Yam MCH; Wong DP; Song WF
    J Strength Cond Res; 2019 May; 33(5):1429-1436. PubMed ID: 28195970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of a light-weight ice-vest for body cooling while wearing fire fighter's protective clothing in the heat.
    Smolander J; Kuklane K; Gavhed D; Nilsson H; Holmér I
    Int J Occup Saf Ergon; 2004; 10(2):111-7. PubMed ID: 15182467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal responses and physiological strain in men wearing impermeable and semipermeable protective clothing in the cold.
    Rissanen S; Rintamäki H
    Ergonomics; 1997 Feb; 40(2):141-50. PubMed ID: 9118932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat strain reduction by ice-based and vapor compression liquid cooling systems with a toxic agent protective uniform.
    Cadarette BS; Levine L; Kolka MA; Proulx GN; Correa MM; Sawka MN
    Aviat Space Environ Med; 2002 Jul; 73(7):665-72. PubMed ID: 12137102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice slurry ingestion increases core temperature capacity and running time in the heat.
    Siegel R; Maté J; Brearley MB; Watson G; Nosaka K; Laursen PB
    Med Sci Sports Exerc; 2010 Apr; 42(4):717-25. PubMed ID: 19952832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the Physiological and Perceptual Responses of Wearing a Newly Designed Cooling Vest for Construction Workers.
    Zhao Y; Yi W; Chan APC; Wong FKW; Yam MCH
    Ann Work Expo Health; 2017 Aug; 61(7):883-901. PubMed ID: 28810683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of warm-up and precooling on endurance performance in the heat.
    Uckert S; Joch W
    Br J Sports Med; 2007 Jun; 41(6):380-4. PubMed ID: 17224434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active versus passive cooling during work in warm environments while wearing firefighting protective clothing.
    Selkirk GA; McLellan TM; Wong J
    J Occup Environ Hyg; 2004 Aug; 1(8):521-31. PubMed ID: 15238305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of wearing aircrew protective clothing on physiological and cognitive responses under various ambient conditions.
    Faerevik H; Reinertsen RE
    Ergonomics; 2003 Jun; 46(8):780-99. PubMed ID: 12745979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of a field-type liquid cooling vest for reducing heat strain while wearing protective clothing.
    Tokizawa K; Son SY; Oka T; Yasuda A
    Ind Health; 2020 Feb; 58(1):63-71. PubMed ID: 31406053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.