These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 21756273)
1. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Dun X; Zhou Z; Xia S; Wen J; Yi B; Shen J; Ma C; Tu J; Fu T Plant J; 2011 Nov; 68(3):532-45. PubMed ID: 21756273 [TBL] [Abstract][Full Text] [Related]
2. BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. Zhou Z; Dun X; Xia S; Shi D; Qin M; Yi B; Wen J; Shen J; Ma C; Tu J; Fu T J Exp Bot; 2012 Mar; 63(5):2041-58. PubMed ID: 22174440 [TBL] [Abstract][Full Text] [Related]
3. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Yi B; Zeng F; Lei S; Chen Y; Yao X; Zhu Y; Wen J; Shen J; Ma C; Tu J; Fu T Plant J; 2010 Sep; 63(6):925-38. PubMed ID: 20598092 [TBL] [Abstract][Full Text] [Related]
4. Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis. Song L; Zhou Z; Tang S; Zhang Z; Xia S; Qin M; Li B; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Plant Cell Physiol; 2016 Sep; 57(9):1972-84. PubMed ID: 27388342 [TBL] [Abstract][Full Text] [Related]
5. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages. Dun X; Shen W; Hu K; Zhou Z; Xia S; Wen J; Yi B; Shen J; Ma C; Tu J; Fu T; Lagercrantz U Plant Physiol; 2014 Nov; 166(3):1403-19. PubMed ID: 25185122 [TBL] [Abstract][Full Text] [Related]
6. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution. Li ZG; Yin WB; Song LY; Chen YH; Guan RZ; Wang JQ; Wang RR; Hu ZM Genome; 2011 Mar; 54(3):202-11. PubMed ID: 21423283 [TBL] [Abstract][Full Text] [Related]
7. Map-based cloning of a recessive genic male sterility locus in Brassica napus L. and development of its functional marker. Li J; Hong D; He J; Ma L; Wan L; Liu P; Yang G Theor Appl Genet; 2012 Jul; 125(2):223-34. PubMed ID: 22382488 [TBL] [Abstract][Full Text] [Related]
8. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Zhu J; Chen H; Li H; Gao JF; Jiang H; Wang C; Guan YF; Yang ZN Plant J; 2008 Jul; 55(2):266-77. PubMed ID: 18397379 [TBL] [Abstract][Full Text] [Related]
9. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Ariizumi T; Hatakeyama K; Hinata K; Inatsugi R; Nishida I; Sato S; Kato T; Tabata S; Toriyama K Plant J; 2004 Jul; 39(2):170-81. PubMed ID: 15225283 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Murphy DJ; Ross JH Plant J; 1998 Jan; 13(1):1-16. PubMed ID: 9680961 [TBL] [Abstract][Full Text] [Related]
11. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells. Wycliffe P; Sitbon F; Wernersson J; Ezcurra I; Ellerström M; Rask L Plant J; 2005 Oct; 44(1):1-15. PubMed ID: 16167891 [TBL] [Abstract][Full Text] [Related]
12. Tic40, a new "old" subunit of the chloroplast protein import translocon. Stahl T; Glockmann C; Soll J; Heins L J Biol Chem; 1999 Dec; 274(52):37467-72. PubMed ID: 10601321 [TBL] [Abstract][Full Text] [Related]
13. Heterodimer Formation of BnPKSA or BnPKSB with BnACOS5 Constitutes a Multienzyme Complex in Tapetal Cells and is Involved in Male Reproductive Development in Brassica napus. Qin M; Tian T; Xia S; Wang Z; Song L; Yi B; Wen J; Shen J; Ma C; Fu T; Tu J Plant Cell Physiol; 2016 Aug; 57(8):1643-56. PubMed ID: 27335346 [TBL] [Abstract][Full Text] [Related]
14. BnC15 and BnATA20, the different putative components, control anther development in Brassica napus L. Wan L; Hu Q; Hong D; Yang G Gene; 2012 Oct; 507(1):9-19. PubMed ID: 22841791 [TBL] [Abstract][Full Text] [Related]
15. The Post-meiotic Deficicent Anther1 (PDA1) gene is required for post-meiotic anther development in rice. Hu L; Tan H; Liang W; Zhang D J Genet Genomics; 2010 Jan; 37(1):37-46. PubMed ID: 20171576 [TBL] [Abstract][Full Text] [Related]
16. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Lu S; Van Eck J; Zhou X; Lopez AB; O'Halloran DM; Cosman KM; Conlin BJ; Paolillo DJ; Garvin DF; Vrebalov J; Kochian LV; Küpper H; Earle ED; Cao J; Li L Plant Cell; 2006 Dec; 18(12):3594-605. PubMed ID: 17172359 [TBL] [Abstract][Full Text] [Related]
17. Modifying the pollen coat protein composition in Brassica. Foster E; Schneiderman D; Cloutier M; Gleddie S; Robert LS Plant J; 2002 Aug; 31(4):477-86. PubMed ID: 12182705 [TBL] [Abstract][Full Text] [Related]
18. MYB80 homologues in Arabidopsis, cotton and Brassica: regulation and functional conservation in tapetal and pollen development. Xu Y; Iacuone S; Li SF; Parish RW BMC Plant Biol; 2014 Oct; 14():278. PubMed ID: 25311582 [TBL] [Abstract][Full Text] [Related]
19. A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). González-Melendi P; Uyttewaal M; Morcillo CN; Hernández Mora JR; Fajardo S; Budar F; Lucas MM J Exp Bot; 2008; 59(4):827-38. PubMed ID: 18349052 [TBL] [Abstract][Full Text] [Related]
20. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Zhu L; Yang Z; Zeng X; Gao J; Liu J; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J Plant Mol Biol; 2017 Apr; 93(6):579-592. PubMed ID: 28108964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]