BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 21756903)

  • 1. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability.
    Chen YS; Lim SC; Chen MH; Quinlan RA; Perng MD
    Exp Cell Res; 2011 Oct; 317(16):2252-66. PubMed ID: 21756903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27.
    Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA
    Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin.
    Perng MD; Cairns L; van den IJssel P; Prescott A; Hutcheson AM; Quinlan RA
    J Cell Sci; 1999 Jul; 112 ( Pt 13)():2099-112. PubMed ID: 10362540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficial effects of curcumin on GFAP filament organization and down-regulation of GFAP expression in an in vitro model of Alexander disease.
    Bachetti T; Di Zanni E; Balbi P; Ravazzolo R; Sechi G; Ceccherini I
    Exp Cell Res; 2012 Sep; 318(15):1844-54. PubMed ID: 22705585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP.
    Hsiao VC; Tian R; Long H; Der Perng M; Brenner M; Quinlan RA; Goldman JE
    J Cell Sci; 2005 May; 118(Pt 9):2057-65. PubMed ID: 15840648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association.
    Perng MD; Wen SF; Gibbon T; Middeldorp J; Sluijs J; Hol EM; Quinlan RA
    Mol Biol Cell; 2008 Oct; 19(10):4521-33. PubMed ID: 18685083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition.
    Tang G; Perng MD; Wilk S; Quinlan R; Goldman JE
    J Biol Chem; 2010 Apr; 285(14):10527-37. PubMed ID: 20110364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation.
    Chen MH; Hagemann TL; Quinlan RA; Messing A; Perng MD
    ASN Neuro; 2013 Nov; 5(5):e00125. PubMed ID: 24102621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro treatments with ceftriaxone promote elimination of mutant glial fibrillary acidic protein and transcription down-regulation.
    Bachetti T; Di Zanni E; Balbi P; Bocca P; Prigione I; Deiana GA; Rezzani A; Ceccherini I; Sechi G
    Exp Cell Res; 2010 Aug; 316(13):2152-65. PubMed ID: 20471977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments.
    Yang AW; Lin NH; Yeh TH; Snider N; Perng MD
    Mol Biol Cell; 2022 Jul; 33(8):ar69. PubMed ID: 35511821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GFAP and its role in Alexander disease.
    Quinlan RA; Brenner M; Goldman JE; Messing A
    Exp Cell Res; 2007 Jun; 313(10):2077-87. PubMed ID: 17498694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mild functional effects of a novel GFAP mutant allele identified in a familial case of adult-onset Alexander disease.
    Bachetti T; Caroli F; Bocca P; Prigione I; Balbi P; Biancheri R; Filocamo M; Mariotti C; Pareyson D; Ravazzolo R; Ceccherini I
    Eur J Hum Genet; 2008 Apr; 16(4):462-70. PubMed ID: 18197187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endless story of the glial fibrillary acidic protein.
    Chen WJ; Liem RK
    J Cell Sci; 1994 Aug; 107 ( Pt 8)():2299-311. PubMed ID: 7983188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistribution of GFAP and alphaB-crystallin after thermal stress in C6 glioma cell line.
    Tseng WC; Lu KS; Lee WC; Chien CL
    J Biomed Sci; 2006 Sep; 13(5):681-94. PubMed ID: 16729237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease.
    Hagemann TL; Boelens WC; Wawrousek EF; Messing A
    Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.
    Sosunov AA; McKhann GM; Goldman JE
    Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GFAP mutations in Alexander disease.
    Li R; Messing A; Goldman JE; Brenner M
    Int J Dev Neurosci; 2002; 20(3-5):259-68. PubMed ID: 12175861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.
    Mignot C; Delarasse C; Escaich S; Della Gaspera B; Noé E; Colucci-Guyon E; Babinet C; Pekny M; Vicart P; Boespflug-Tanguy O; Dautigny A; Rodriguez D; Pham-Dinh D
    Exp Cell Res; 2007 Aug; 313(13):2766-79. PubMed ID: 17604020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response.
    Hagemann TL; Connor JX; Messing A
    J Neurosci; 2006 Oct; 26(43):11162-73. PubMed ID: 17065456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein.
    Ralton JE; Lu X; Hutcheson AM; Quinlan RA
    J Cell Sci; 1994 Jul; 107 ( Pt 7)():1935-48. PubMed ID: 7983160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.