These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21757200)

  • 1. Tailoring the carbon nanostructures grown on the surface of Ni-Al bimetallic nanoparticles in the gas phase.
    Kim WD; Ahn JY; Lee DG; Lee HW; Hong SW; Park HS; Kim SH
    J Colloid Interface Sci; 2011 Oct; 362(2):261-6. PubMed ID: 21757200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.
    Moon YK; Lee J; Lee JK; Kim TK; Kim SH
    Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanostraws: nanotubes filled with superparamagnetic nanoparticles.
    Pal S; Chandra S; Phan MH; Mukherjee P; Srikanth H
    Nanotechnology; 2009 Dec; 20(48):485604. PubMed ID: 19880982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of bimetallic nanoparticles and their application to growth of multiwalled carbon nanotube forest.
    Choi BH; Kim YM; Kim YB; Lee JH; Shin DC
    J Nanosci Nanotechnol; 2010 May; 10(5):3543-6. PubMed ID: 20358996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology.
    Guo S; Dong S; Wang E
    Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-rate low-temperature growth of vertically aligned carbon nanotubes.
    Shang NG; Tan YY; Stolojan V; Papakonstantinou P; Silva SR
    Nanotechnology; 2010 Dec; 21(50):505604. PubMed ID: 21098946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assemblies of carbon nanotubes and unencapsulated sub-10-nm gold nanoparticles.
    Hang Q; Maschmann MR; Fisher TS; Janes DB
    Small; 2007 Jul; 3(7):1266-71. PubMed ID: 17487897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells.
    Wadhwa S; Rea C; O'Hare P; Mathur A; Roy SS; Dunlop PS; Byrne JA; Burke G; Meenan B; McLaughlin JA
    J Hazard Mater; 2011 Jul; 191(1-3):56-61. PubMed ID: 21601355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction.
    Luo J; Njoki PN; Lin Y; Mott D; Wang L; Zhong CJ
    Langmuir; 2006 Mar; 22(6):2892-8. PubMed ID: 16519500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz.
    Kim JJ; Lee BJ; Lee SH; Jeong GH
    Nanotechnology; 2012 Mar; 23(10):105607. PubMed ID: 22362281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding.
    Lu C; Liu J
    J Phys Chem B; 2006 Oct; 110(41):20254-7. PubMed ID: 17034203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis.
    Qin Y; Jiang X; Cui Z
    J Phys Chem B; 2005 Nov; 109(46):21749-54. PubMed ID: 16853825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bamboo-shaped carbon nanotubes generated by methane thermal decomposition using Ni nanoparticles synthesized in water-oil emulsions.
    González I; De Jesus J; Cañizales E
    Micron; 2011 Dec; 42(8):819-25. PubMed ID: 21700468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.