These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 21757200)
21. In-flight kinetic measurements of the aerosol growth of carbon nanotubes by electrical mobility classification. Kim SH; Zachariah MR J Phys Chem B; 2006 Mar; 110(10):4555-62. PubMed ID: 16526684 [TBL] [Abstract][Full Text] [Related]
22. Mesoporous silicas impregnated with cobalt and nickel oxide nanoparticles and the growth of carbon nanotubes there from. Barreca D; Blau WJ; Dillon FC; Holmes JD; Kufazvinei C; Morris MA; Spalding TR; Tondello E J Nanosci Nanotechnol; 2008 Jul; 8(7):3333-42. PubMed ID: 19051877 [TBL] [Abstract][Full Text] [Related]
23. The rapid growth of vertically aligned carbon nanotubes using laser heating. Park JB; Jeong SH; Jeong MS; Lim SC; Lee IH; Lee YH Nanotechnology; 2009 May; 20(18):185604. PubMed ID: 19420620 [TBL] [Abstract][Full Text] [Related]
24. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Wang H; Ren ZF Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923 [TBL] [Abstract][Full Text] [Related]
25. Monodisperse Pt(3)Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Wang C; Wang G; van der Vliet D; Chang KC; Markovic NM; Stamenkovic VR Phys Chem Chem Phys; 2010 Jul; 12(26):6933-9. PubMed ID: 20526494 [TBL] [Abstract][Full Text] [Related]
26. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2. Lucky RA; Charpentier PA Nanotechnology; 2009 May; 20(19):195601. PubMed ID: 19420640 [TBL] [Abstract][Full Text] [Related]
27. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. Fang Z; Qiu X; Chen J; Qiu X J Hazard Mater; 2011 Jan; 185(2-3):958-69. PubMed ID: 21035251 [TBL] [Abstract][Full Text] [Related]
28. Electronic structure and field emission of multiwalled carbon nanotubes depending on growth temperature. Yoon SW; Kim SY; Park J; Park CJ; Lee CJ J Phys Chem B; 2005 Nov; 109(43):20403-6. PubMed ID: 16853640 [TBL] [Abstract][Full Text] [Related]
29. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports. Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400 [TBL] [Abstract][Full Text] [Related]
30. Hydrogen storage in ni nanoparticle-dispersed multiwalled carbon nanotubes. Kim HS; Lee H; Han KS; Kim JH; Song MS; Park MS; Lee JY; Kang JK J Phys Chem B; 2005 May; 109(18):8983-6. PubMed ID: 16852070 [TBL] [Abstract][Full Text] [Related]
31. High-yield synthesis of single-wall carbon nanotubes on MCM41 using catalytic chemical vapor deposition of acetylene. Ramesh P; Kishi N; Sugai T; Shinohara H J Phys Chem B; 2006 Jan; 110(1):130-5. PubMed ID: 16471510 [TBL] [Abstract][Full Text] [Related]
32. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device. Agarwal S; Yamini Sarada B; Kar KK Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034 [TBL] [Abstract][Full Text] [Related]
33. Carbon monoxide-assisted size confinement of bimetallic alloy nanoparticles. Cui C; Gan L; Neumann M; Heggen M; Cuenya BR; Strasser P J Am Chem Soc; 2014 Apr; 136(13):4813-6. PubMed ID: 24592858 [TBL] [Abstract][Full Text] [Related]
34. Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. Tessonnier JP; Ersen O; Weinberg G; Pham-Huu C; Su DS; Schlögl R ACS Nano; 2009 Aug; 3(8):2081-9. PubMed ID: 19702319 [TBL] [Abstract][Full Text] [Related]
35. Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells. Waje MM; Wang X; Li W; Yan Y Nanotechnology; 2005 Jul; 16(7):S395-400. PubMed ID: 21727458 [TBL] [Abstract][Full Text] [Related]
36. Composition-controlled synthesis of bimetallic gold-silver nanoparticles. Kariuki NN; Luo J; Maye MM; Hassan SA; Menard T; Naslund HR; Lin Y; Wang C; Engelhard MH; Zhong CJ Langmuir; 2004 Dec; 20(25):11240-6. PubMed ID: 15568881 [TBL] [Abstract][Full Text] [Related]
37. Surface Modification of Short Carbon Fibers with Carbon Nanotubes to Reinforce Epoxy Matrix Composites. Zhanjun L; Hui C; Jing W; Xiaohong X; Hongbo L; Li Y J Nanosci Nanotechnol; 2018 Jul; 18(7):4940-4952. PubMed ID: 29442678 [TBL] [Abstract][Full Text] [Related]
38. A rapid synthesis of iron phosphate nanoparticles via surface-mediated spontaneous reaction for the growth of high-yield, single-walled carbon nanotubes. Yang HJ; Song HJ; Shin HJ; Choi HC Langmuir; 2005 Sep; 21(20):9098-102. PubMed ID: 16171338 [TBL] [Abstract][Full Text] [Related]
39. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system. Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284 [TBL] [Abstract][Full Text] [Related]
40. Carbon saturation of arrays of Ni catalyst nanoparticles of different size and pattern uniformity on a silicon substrate. Levchenko I; Ostrikov K Nanotechnology; 2008 Aug; 19(33):335703. PubMed ID: 21730629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]