These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 21757230)
1. Functional organization of dendritic Ca2+ signals in midbrain dopamine neurons. Jang M; Jang JY; Kim SH; Uhm KB; Kang YK; Kim HJ; Chung S; Park MK Cell Calcium; 2011 Oct; 50(4):370-80. PubMed ID: 21757230 [TBL] [Abstract][Full Text] [Related]
2. Glutamate-mediated [Ca2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta. Choi YM; Kim SH; Uhm DY; Park MK J Cell Sci; 2003 Jul; 116(Pt 13):2665-75. PubMed ID: 12746490 [TBL] [Abstract][Full Text] [Related]
3. Homeostatic regulation mechanism of spontaneous firing determines glutamate responsiveness in the midbrain dopamine neurons. Kim SH; Jang JY; Jang M; Um KB; Chung S; Kim HJ; Park MK Cell Calcium; 2013 Oct; 54(4):295-306. PubMed ID: 23988034 [TBL] [Abstract][Full Text] [Related]
4. Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. Kuznetsov AS; Kopell NJ; Wilson CJ J Neurophysiol; 2006 Feb; 95(2):932-47. PubMed ID: 16207783 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Kv4.2 channels by glutamate in cultured hippocampal neurons. Lei Z; Deng P; Xu ZC J Neurochem; 2008 Jul; 106(1):182-92. PubMed ID: 18363830 [TBL] [Abstract][Full Text] [Related]
6. Two different Ca2+-dependent inhibitory mechanisms of spontaneous firing by glutamate in dopamine neurons. Kim SH; Choi YM; Chung S; Uhm DY; Park MK J Neurochem; 2004 Nov; 91(4):983-95. PubMed ID: 15525352 [TBL] [Abstract][Full Text] [Related]
7. Localized contribution of N-methyl-D-aspartate receptors to synaptic input-induced rise of calcium in apical dendrites of layer II/III neurons in rat visual cortex. Yasuda H; Kinoshita S; Tsumoto T Neuroscience; 1998 Aug; 85(4):1011-24. PubMed ID: 9681942 [TBL] [Abstract][Full Text] [Related]
11. Tonic firing rate controls dendritic Ca2+ signaling and synaptic gain in substantia nigra dopamine neurons. Hage TA; Khaliq ZM J Neurosci; 2015 Apr; 35(14):5823-36. PubMed ID: 25855191 [TBL] [Abstract][Full Text] [Related]
12. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons. Bonansco C; Buño W Hippocampus; 2003; 13(1):150-63. PubMed ID: 12625465 [TBL] [Abstract][Full Text] [Related]
13. Non-NMDA and NMDA receptor agonists induced excitation and their differential effect in activation of superior salivatory nucleus neurons in anaesthetized rats. Ishizuka K; Oskutyte D; Satoh Y; Murakami T Auton Neurosci; 2008 Feb; 138(1-2):41-9. PubMed ID: 17988955 [TBL] [Abstract][Full Text] [Related]
14. AMPA and NMDA receptor regulation of firing activity in 5-HT neurons of the dorsal and median raphe nuclei. Gartside SE; Cole AJ; Williams AP; McQuade R; Judge SJ Eur J Neurosci; 2007 May; 25(10):3001-8. PubMed ID: 17509083 [TBL] [Abstract][Full Text] [Related]
15. Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. Larkum ME; Rioult MG; Lüscher HR J Neurophysiol; 1996 Jan; 75(1):154-70. PubMed ID: 8822549 [TBL] [Abstract][Full Text] [Related]
16. Contacts among non-sister dendritic branches at bifurcations shape neighboring dendrites and pattern their synaptic inputs. Cove J; Blinder P; Baranes D Brain Res; 2009 Jan; 1251():30-41. PubMed ID: 19046952 [TBL] [Abstract][Full Text] [Related]
17. Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Sobczyk A; Svoboda K Neuron; 2007 Jan; 53(1):17-24. PubMed ID: 17196527 [TBL] [Abstract][Full Text] [Related]