These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

742 related articles for article (PubMed ID: 21757250)

  • 1. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal image analysis based on mixture models to detect hard exudates.
    Sánchez CI; García M; Mayo A; López MI; Hornero R
    Med Image Anal; 2009 Aug; 13(4):650-8. PubMed ID: 19539518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.
    Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
    Proc Inst Mech Eng H; 2013 Jan; 227(1):37-49. PubMed ID: 23516954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy.
    Narasimha-Iyer H; Can A; Roysam B; Stewart CV; Tanenbaum HL; Majerovics A; Singh H
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1084-98. PubMed ID: 16761836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of age-related macular degeneration in retinal fundus images.
    Köse C; Sevik U; Gençalioğlu O
    Comput Biol Med; 2008 May; 38(5):611-9. PubMed ID: 18402931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
    Rosas-Romero R; Martínez-Carballido J; Hernández-Capistrán J; Uribe-Valencia LJ
    Comput Med Imaging Graph; 2015 Sep; 44():41-53. PubMed ID: 26245720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.
    Aquino A; Gegundez-Arias ME; Marin D
    IEEE Trans Med Imaging; 2010 Nov; 29(11):1860-9. PubMed ID: 20562037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment.
    Joshi GD; Sivaswamy J; Krishnadas SR
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1192-205. PubMed ID: 21536531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vessel extraction from non-fluorescein fundus images using orientation-aware detector.
    Yin B; Li H; Sheng B; Hou X; Chen Y; Wu W; Li P; Shen R; Bao Y; Jia W
    Med Image Anal; 2015 Dec; 26(1):232-42. PubMed ID: 26474120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.
    Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P
    Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiple-instance learning framework for diabetic retinopathy screening.
    Quellec G; Lamard M; Abràmoff MD; Decencière E; Lay B; Erginay A; Cochener B; Cazuguel G
    Med Image Anal; 2012 Aug; 16(6):1228-40. PubMed ID: 22850462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A variational method for geometric regularization of vascular segmentation in medical images.
    Gooya A; Liao H; Matsumiya K; Masamune K; Masutani Y; Dohi T
    IEEE Trans Image Process; 2008 Aug; 17(8):1295-312. PubMed ID: 18632340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal microaneurysm detection through local rotating cross-section profile analysis.
    Lazar I; Hajdu A
    IEEE Trans Med Imaging; 2013 Feb; 32(2):400-7. PubMed ID: 23192523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-based detection of diabetes retinopathy stages using digital fundus images.
    Acharya UR; Lim CM; Ng EY; Chee C; Tamura T
    Proc Inst Mech Eng H; 2009 Jul; 223(5):545-53. PubMed ID: 19623908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.