BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 21757339)

  • 1. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate.
    Tsigie YA; Wang CY; Truong CT; Ju YH
    Bioresour Technol; 2011 Oct; 102(19):9216-22. PubMed ID: 21757339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate.
    Tsigie YA; Wang CY; Kasim NS; Diem QD; Huynh LH; Ho QP; Truong CT; Ju YH
    J Biomed Biotechnol; 2012; 2012():378384. PubMed ID: 22496604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol production from Yarrowia lipolytica Po1g biomass.
    Tsigie YA; Wu CH; Huynh LH; Ismadji S; Ju YH
    Bioresour Technol; 2013 Oct; 145():210-6. PubMed ID: 23265824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing biodiesel production from Yarrowia lipolytica Po1g biomass using subcritical water pretreatment.
    Tsigie YA; Huynh LH; Ahmed IN; Ju YH
    Bioresour Technol; 2012 May; 111():201-7. PubMed ID: 22405757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions.
    Sestric R; Munch G; Cicek N; Sparling R; Levin DB
    Bioresour Technol; 2014 Jul; 164():41-6. PubMed ID: 24835917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid hydrolysis of sugarcane bagasse for lactic acid production.
    Laopaiboon P; Thani A; Leelavatcharamas V; Laopaiboon L
    Bioresour Technol; 2010 Feb; 101(3):1036-43. PubMed ID: 19766480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sugarcane bagasse hydrolysate (SCBH) on cell growth and fatty acid accumulation of heterotrophic Chlorella protothecoides.
    Chen JH; Liu L; Lim PE; Wei D
    Bioprocess Biosyst Eng; 2019 Jul; 42(7):1129-1142. PubMed ID: 30919105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.
    Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling xylose utilization in Yarrowia lipolytica for lipid production.
    Li H; Alper HS
    Biotechnol J; 2016 Sep; 11(9):1230-40. PubMed ID: 27367454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate.
    Quarterman J; Slininger PJ; Kurtzman CP; Thompson SR; Dien BS
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3319-3334. PubMed ID: 28012044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of single cell oil by
    Zainuddin MF; Kar Fai C; Mohamed MS; Abdul Rahman N'; Halim M
    PeerJ; 2022; 10():e12833. PubMed ID: 35251776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production.
    Poli JS; da Silva MA; Siqueira EP; Pasa VM; Rosa CA; Valente P
    Bioresour Technol; 2014 Jun; 161():320-6. PubMed ID: 24727354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction.
    Silva SS; Matos ZR; Carvalho W
    Biotechnol Prog; 2005; 21(5):1449-52. PubMed ID: 16209549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carbon source on lipid accumulation and biodiesel production of Yarrowia lipolytica.
    Chai B; Wang Y; Wang W; Fan P
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31234-31242. PubMed ID: 31463748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica.
    Fontanille P; Kumar V; Christophe G; Nouaille R; Larroche C
    Bioresour Technol; 2012 Jun; 114():443-9. PubMed ID: 22464419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.
    Katre G; Ajmera N; Zinjarde S; RaviKumar A
    Microb Cell Fact; 2017 Oct; 16(1):176. PubMed ID: 29065878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.
    Papanikolaou S; Chevalot I; Komaitis M; Marc I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):308-12. PubMed ID: 11935181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.
    Liu X; Lv J; Zhang T; Deng Y
    Prep Biochem Biotechnol; 2015; 45(8):825-35. PubMed ID: 25356914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation.
    Brabender M; Hussain MS; Rodriguez G; Blenner MA
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2313-2322. PubMed ID: 29383430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.