These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 21757730)
41. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Wang S; Amato KR; Song W; Youngblood V; Lee K; Boothby M; Brantley-Sieders DM; Chen J Mol Cell Biol; 2015 Apr; 35(7):1299-313. PubMed ID: 25582201 [TBL] [Abstract][Full Text] [Related]
42. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Toschi A; Lee E; Xu L; Garcia A; Gadir N; Foster DA Mol Cell Biol; 2009 Mar; 29(6):1411-20. PubMed ID: 19114562 [TBL] [Abstract][Full Text] [Related]
43. Intracellular calcium plays a role as the second messenger of hypotonic stress in gene regulation of SGK1 and ENaC in renal epithelial A6 cells. Taruno A; Niisato N; Marunaka Y Am J Physiol Renal Physiol; 2008 Jan; 294(1):F177-86. PubMed ID: 17959754 [TBL] [Abstract][Full Text] [Related]
44. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. Feldman ME; Apsel B; Uotila A; Loewith R; Knight ZA; Ruggero D; Shokat KM PLoS Biol; 2009 Feb; 7(2):e38. PubMed ID: 19209957 [TBL] [Abstract][Full Text] [Related]
45. Localization of mTORC2 activity inside cells. Ebner M; Sinkovics B; Szczygieł M; Ribeiro DW; Yudushkin I J Cell Biol; 2017 Feb; 216(2):343-353. PubMed ID: 28143890 [TBL] [Abstract][Full Text] [Related]
46. Phosphorylation of the Hippo Pathway Component AMOTL2 by the mTORC2 Kinase Promotes YAP Signaling, Resulting in Enhanced Glioblastoma Growth and Invasiveness. Artinian N; Cloninger C; Holmes B; Benavides-Serrato A; Bashir T; Gera J J Biol Chem; 2015 Aug; 290(32):19387-401. PubMed ID: 25998128 [TBL] [Abstract][Full Text] [Related]
47. Inhibitors of the proteasome stimulate the epithelial sodium channel (ENaC) through SGK1 and mimic the effect of aldosterone. Mansley MK; Korbmacher C; Bertog M Pflugers Arch; 2018 Feb; 470(2):295-304. PubMed ID: 28861610 [TBL] [Abstract][Full Text] [Related]
49. [Function of mTORC2 and its roles in hematological malignancies]. Guo HD; Cheng T; Yuan WP Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2013 Aug; 21(4):1063-8. PubMed ID: 23998613 [TBL] [Abstract][Full Text] [Related]
50. Androgen Receptor Enhances p27 Degradation in Prostate Cancer Cells through Rapid and Selective TORC2 Activation. Fang Z; Zhang T; Dizeyi N; Chen S; Wang H; Swanson KD; Cai C; Balk SP; Yuan X J Biol Chem; 2012 Jan; 287(3):2090-8. PubMed ID: 22139837 [TBL] [Abstract][Full Text] [Related]
51. Rictor Undergoes Glycogen Synthase Kinase 3 (GSK3)-dependent, FBXW7-mediated Ubiquitination and Proteasomal Degradation. Koo J; Wu X; Mao Z; Khuri FR; Sun SY J Biol Chem; 2015 May; 290(22):14120-9. PubMed ID: 25897075 [TBL] [Abstract][Full Text] [Related]
52. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin. Zou Z; Chen J; Yang J; Bai X Curr Cancer Drug Targets; 2016; 16(4):288-304. PubMed ID: 26563881 [TBL] [Abstract][Full Text] [Related]
53. mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8. Kim SJ; DeStefano MA; Oh WJ; Wu CC; Vega-Cotto NM; Finlan M; Liu D; Su B; Jacinto E Mol Cell; 2012 Dec; 48(6):875-87. PubMed ID: 23142081 [TBL] [Abstract][Full Text] [Related]
54. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Yin Y; Hua H; Li M; Liu S; Kong Q; Shao T; Wang J; Luo Y; Wang Q; Luo T; Jiang Y Cell Res; 2016 Jan; 26(1):46-65. PubMed ID: 26584640 [TBL] [Abstract][Full Text] [Related]
55. The Bardet-Biedl syndrome-related protein CCDC28B modulates mTORC2 function and interacts with SIN1 to control cilia length independently of the mTOR complex. Cardenas-Rodriguez M; Irigoín F; Osborn DP; Gascue C; Katsanis N; Beales PL; Badano JL Hum Mol Genet; 2013 Oct; 22(20):4031-42. PubMed ID: 23727834 [TBL] [Abstract][Full Text] [Related]
56. Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. Kuss-Duerkop SK; Wang J; Mena I; White K; Metreveli G; Sakthivel R; Mata MA; Muñoz-Moreno R; Chen X; Krammer F; Diamond MS; Chen ZJ; García-Sastre A; Fontoura BMA PLoS Pathog; 2017 Sep; 13(9):e1006635. PubMed ID: 28953980 [TBL] [Abstract][Full Text] [Related]
57. Inducible kidney-specific Sgk1 knockout mice show a salt-losing phenotype. Faresse N; Lagnaz D; Debonneville A; Ismailji A; Maillard M; Fejes-Toth G; Náray-Fejes-Tóth A; Staub O Am J Physiol Renal Physiol; 2012 Apr; 302(8):F977-85. PubMed ID: 22301619 [TBL] [Abstract][Full Text] [Related]
58. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4-2/WNK1 and ENaC. Al-Qusairi L; Basquin D; Roy A; Stifanelli M; Rajaram RD; Debonneville A; Nita I; Maillard M; Loffing J; Subramanya AR; Staub O Am J Physiol Renal Physiol; 2016 Aug; 311(2):F330-42. PubMed ID: 27009335 [TBL] [Abstract][Full Text] [Related]
59. Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses. Kaur S; Sassano A; Majchrzak-Kita B; Baker DP; Su B; Fish EN; Platanias LC Proc Natl Acad Sci U S A; 2012 May; 109(20):7723-8. PubMed ID: 22550181 [TBL] [Abstract][Full Text] [Related]
60. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport. Satoh N; Nakamura M; Suzuki M; Suzuki A; Seki G; Horita S Biomed Res Int; 2015; 2015():971697. PubMed ID: 26491696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]