BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21757736)

  • 21. Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases.
    Araki K; Iemura S; Kamiya Y; Ron D; Kato K; Natsume T; Nagata K
    J Cell Biol; 2013 Sep; 202(6):861-74. PubMed ID: 24043701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical evidence that regulation of Ero1β activity in human cells does not involve the isoform-specific cysteine 262.
    Hansen HG; Søltoft CL; Schmidt JD; Birk J; Appenzeller-Herzog C; Ellgaard L
    Biosci Rep; 2014 Apr; 34(2):. PubMed ID: 27919037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI.
    Inaba K; Masui S; Iida H; Vavassori S; Sitia R; Suzuki M
    EMBO J; 2010 Oct; 29(19):3330-43. PubMed ID: 20834232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1α.
    Chambers JE; Tavender TJ; Oka OB; Warwood S; Knight D; Bulleid NJ
    J Biol Chem; 2010 Sep; 285(38):29200-7. PubMed ID: 20657012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of mammalian Ero1α is catalysed by specific protein disulfide-isomerases.
    Shepherd C; Oka OB; Bulleid NJ
    Biochem J; 2014 Jul; 461(1):107-13. PubMed ID: 24758166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum.
    Xiao R; Wilkinson B; Solovyov A; Winther JR; Holmgren A; Lundström-Ljung J; Gilbert HF
    J Biol Chem; 2004 Nov; 279(48):49780-6. PubMed ID: 15377672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum.
    Frand AR; Kaiser CA
    Mol Cell; 1999 Oct; 4(4):469-77. PubMed ID: 10549279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum.
    Frand AR; Kaiser CA
    Mol Biol Cell; 2000 Sep; 11(9):2833-43. PubMed ID: 10982384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Balanced Ero1 activation and inactivation establishes ER redox homeostasis.
    Kim S; Sideris DP; Sevier CS; Kaiser CA
    J Cell Biol; 2012 Mar; 196(6):713-25. PubMed ID: 22412017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low reduction potential of Ero1alpha regulatory disulphides ensures tight control of substrate oxidation.
    Baker KM; Chakravarthi S; Langton KP; Sheppard AM; Lu H; Bulleid NJ
    EMBO J; 2008 Nov; 27(22):2988-97. PubMed ID: 18971943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme.
    Oka OB; Yeoh HY; Bulleid NJ
    Biochem J; 2015 Jul; 469(2):279-88. PubMed ID: 25989104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical basis of oxidative protein folding in the endoplasmic reticulum.
    Tu BP; Ho-Schleyer SC; Travers KJ; Weissman JS
    Science; 2000 Nov; 290(5496):1571-4. PubMed ID: 11090354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FAD oxidizes the ERO1-PDI electron transfer chain: the role of membrane integrity.
    Papp E; Nardai G; Mandl J; Bánhegyi G; Csermely P
    Biochem Biophys Res Commun; 2005 Dec; 338(2):938-45. PubMed ID: 16246310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cysteines 208 and 241 in Ero1α are required for maximal catalytic turnover.
    Ramming T; Kanemura S; Okumura M; Inaba K; Appenzeller-Herzog C
    Redox Biol; 2016 Apr; 7():14-20. PubMed ID: 26609561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological effects of over-expressing compartment-specific components of the protein folding machinery in xylose-fermenting Saccharomyces cerevisiae.
    Bergdahl B; Gorwa-Grauslund MF; van Niel EW
    BMC Biotechnol; 2014 Apr; 14():28. PubMed ID: 24758421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum.
    Hudson DA; Gannon SA; Thorpe C
    Free Radic Biol Med; 2015 Mar; 80():171-82. PubMed ID: 25091901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting the functional interplay between endoplasmic reticulum oxidoreductin-1α and protein disulfide isomerase suppresses the progression of cervical cancer.
    Zhang Y; Li T; Zhang L; Shangguan F; Shi G; Wu X; Cui Y; Wang X; Wang X; Liu Y; Lu B; Wei T; Wang CC; Wang L
    EBioMedicine; 2019 Mar; 41():408-419. PubMed ID: 30826359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-native proteins inhibit the ER oxidoreductin 1 (Ero1)-protein disulfide-isomerase relay when protein folding capacity is exceeded.
    Moilanen A; Ruddock LW
    J Biol Chem; 2020 Jun; 295(26):8647-8655. PubMed ID: 32102847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum.
    Cabibbo A; Pagani M; Fabbri M; Rocchi M; Farmery MR; Bulleid NJ; Sitia R
    J Biol Chem; 2000 Feb; 275(7):4827-33. PubMed ID: 10671517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conservation and diversity of the cellular disulfide bond formation pathways.
    Sevier CS; Kaiser CA
    Antioxid Redox Signal; 2006; 8(5-6):797-811. PubMed ID: 16771671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.