These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21757800)

  • 1. Graphene in inhomogeneous magnetic fields: bound, quasi-bound and scattering states.
    Ramezani Masir M; Vasilopoulos P; Peeters FM
    J Phys Condens Matter; 2011 Aug; 23(31):315301. PubMed ID: 21757800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant, non-resonant and anomalous states of Dirac electrons in a parabolic well in the presence of magnetic fields.
    Kim SC; Lee JW; Eric Yang SR
    J Phys Condens Matter; 2012 Dec; 24(49):495302. PubMed ID: 23137993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy spectrum and density of states for a graphene quantum dot in a magnetic field.
    Horing NJ; Liu SY
    J Phys Condens Matter; 2010 Jan; 22(2):025502. PubMed ID: 21386256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons.
    Huang YC; Chang CP; Lin MF
    Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit.
    Mendoza M; Ujevic S
    J Phys Condens Matter; 2012 Jun; 24(23):235302. PubMed ID: 22568973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of Dirac-like excitations in graphene in the presence of smooth inhomogeneous magnetic fields.
    Roy P; Ghosh TK; Bhattacharya K
    J Phys Condens Matter; 2012 Feb; 24(5):055301. PubMed ID: 22227414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field barriers in graphene: an analytically solvable model.
    Milpas E; Torres M; Murguía G
    J Phys Condens Matter; 2011 Jun; 23(24):245304. PubMed ID: 21628785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap opening in the zeroth Landau level in gapped graphene: pseudo-Zeeman splitting in an angular magnetic field.
    Tahir M; Sabeeh K
    J Phys Condens Matter; 2012 Apr; 24(13):135005. PubMed ID: 22392807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of quasi-bound states in the circular n-p junction of bilayer graphene under magnetic field.
    Ji H; Pan Y; Liu H
    Sci Rep; 2020 Oct; 10(1):16256. PubMed ID: 33004961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magneto-transport properties of gapped graphene.
    Jiang L; Zheng Y; Li H; Shen H
    Nanotechnology; 2010 Apr; 21(14):145703. PubMed ID: 20220217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the hyperpolarizability tensor using external electromagnetic fields and nuclear placement.
    Watkins DS; Kuzyk MG
    J Chem Phys; 2009 Aug; 131(6):064110. PubMed ID: 19691381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-bound states in an NPN-type nanometer-scale graphene quantum dot under a magnetic field.
    Pan Y; Ji H; Li XQ; Liu H
    Sci Rep; 2020 Nov; 10(1):20426. PubMed ID: 33235215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic forces and localized resonances in electron transfer through quantum rings.
    Poniedziałek MR; Szafran B
    J Phys Condens Matter; 2010 Nov; 22(46):465801. PubMed ID: 21403375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-field-induced destruction of quasi-Landau levels in bilayer graphene nanoribbons.
    Chung HC; Su WP; Lin MF
    Phys Chem Chem Phys; 2013 Jan; 15(3):868-75. PubMed ID: 23202884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of complex EMF exposure situations including inhomogeneous field distribution.
    Jokela K
    Health Phys; 2007 Jun; 92(6):531-40. PubMed ID: 17495653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation effects on Landau levels in a monolayer graphene.
    Ho JH; Lai YH; Chiu YH; Lin MF
    Nanotechnology; 2008 Jan; 19(3):035712. PubMed ID: 21817597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy spectra of a single-electron magnetic dot using the massless Dirac-Weyl equation.
    Lee CM; Lee RC; Ruan WY; Chou MY
    J Phys Condens Matter; 2010 Sep; 22(35):355501. PubMed ID: 21403291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma excitations in graphene: their spectral intensity and temperature dependence in magnetic field.
    Wu JY; Chen SC; Roslyak O; Gumbs G; Lin MF
    ACS Nano; 2011 Feb; 5(2):1026-32. PubMed ID: 21204567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tight-binding electrons on triangular and kagomé lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies.
    Li J; Wang YF; Gong CD
    J Phys Condens Matter; 2011 Apr; 23(15):156002. PubMed ID: 21460430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport in a magnetic field modulated graphene superlattice.
    Li YX
    J Phys Condens Matter; 2010 Jan; 22(1):015302. PubMed ID: 21386222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.