BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21757867)

  • 1. Truncated peroxisome proliferator-activated receptor-γ coactivator 1α splice variant is severely altered in Huntington's disease.
    Johri A; Starkov AA; Chandra A; Hennessey T; Sharma A; Orobello S; Squitieri F; Yang L; Beal MF
    Neurodegener Dis; 2011; 8(6):496-503. PubMed ID: 21757867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration.
    Weydt P; Pineda VV; Torrence AE; Libby RT; Satterfield TF; Lazarowski ER; Gilbert ML; Morton GJ; Bammler TK; Strand AD; Cui L; Beyer RP; Easley CN; Smith AC; Krainc D; Luquet S; Sweet IR; Schwartz MW; La Spada AR
    Cell Metab; 2006 Nov; 4(5):349-62. PubMed ID: 17055784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxisome-proliferator-activated receptor gamma coactivator 1 α contributes to dysmyelination in experimental models of Huntington's disease.
    Xiang Z; Valenza M; Cui L; Leoni V; Jeong HK; Brilli E; Zhang J; Peng Q; Duan W; Reeves SA; Cattaneo E; Krainc D
    J Neurosci; 2011 Jun; 31(26):9544-53. PubMed ID: 21715619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation.
    Chaturvedi RK; Calingasan NY; Yang L; Hennessey T; Johri A; Beal MF
    Hum Mol Genet; 2010 Aug; 19(16):3190-205. PubMed ID: 20529956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired PGC-1alpha function in muscle in Huntington's disease.
    Chaturvedi RK; Adhihetty P; Shukla S; Hennessy T; Calingasan N; Yang L; Starkov A; Kiaei M; Cannella M; Sassone J; Ciammola A; Squitieri F; Beal MF
    Hum Mol Genet; 2009 Aug; 18(16):3048-65. PubMed ID: 19460884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mRNA expression levels of PGC-1α in a transgenic and a toxin model of Huntington's disease.
    Török R; Kónya JA; Zádori D; Veres G; Szalárdy L; Vécsei L; Klivényi P
    Cell Mol Neurobiol; 2015 Mar; 35(2):293-301. PubMed ID: 25319408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Specific Deletion of PGC-1α from Medium Spiny Neurons Causes Transcriptional Alterations and Age-Related Motor Impairment.
    McMeekin LJ; Li Y; Fox SN; Rowe GC; Crossman DK; Day JJ; Li Y; Detloff PJ; Cowell RM
    J Neurosci; 2018 Mar; 38(13):3273-3286. PubMed ID: 29491012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
    Chaturvedi RK; Hennessey T; Johri A; Tiwari SK; Mishra D; Agarwal S; Kim YS; Beal MF
    Hum Mol Genet; 2012 Aug; 21(15):3474-88. PubMed ID: 22589249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration.
    Cui L; Jeong H; Borovecki F; Parkhurst CN; Tanese N; Krainc D
    Cell; 2006 Oct; 127(1):59-69. PubMed ID: 17018277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological upregulation of PGC1α in oligodendrocytes: implications for Huntington's Disease.
    Xiang Z; Krainc D
    J Huntingtons Dis; 2013; 2(1):101-5. PubMed ID: 25063433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease.
    Johri A; Calingasan NY; Hennessey TM; Sharma A; Yang L; Wille E; Chandra A; Beal MF
    Hum Mol Genet; 2012 Mar; 21(5):1124-37. PubMed ID: 22095692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activating mitochondrial regulator PGC-1α expression by astrocytic NGF is a therapeutic strategy for Huntington's disease.
    Chen LW; Horng LY; Wu CL; Sung HC; Wu RT
    Neuropharmacology; 2012 Sep; 63(4):719-32. PubMed ID: 22633948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes.
    Watt MJ; Southgate RJ; Holmes AG; Febbraio MA
    J Mol Endocrinol; 2004 Oct; 33(2):533-44. PubMed ID: 15525607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter.
    Martin E; Betuing S; Pagès C; Cambon K; Auregan G; Deglon N; Roze E; Caboche J
    Hum Mol Genet; 2011 Jun; 20(12):2422-34. PubMed ID: 21493629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Brown and White Adipocyte Transcriptome by the Transcriptional Coactivator NT-PGC-1α.
    Kim J; Fernand VE; Henagan TM; Shin J; Huypens P; Newman S; Gettys TW; Chang JS
    PLoS One; 2016; 11(7):e0159990. PubMed ID: 27454177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease.
    McConoughey SJ; Basso M; Niatsetskaya ZV; Sleiman SF; Smirnova NA; Langley BC; Mahishi L; Cooper AJ; Antonyak MA; Cerione RA; Li B; Starkov A; Chaturvedi RK; Beal MF; Coppola G; Geschwind DH; Ryu H; Xia L; Iismaa SE; Pallos J; Pasternack R; Hils M; Fan J; Raymond LA; Marsh JL; Thompson LM; Ratan RR
    EMBO Mol Med; 2010 Sep; 2(9):349-70. PubMed ID: 20665636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond.
    Tsunemi T; La Spada AR
    Prog Neurobiol; 2012 May; 97(2):142-51. PubMed ID: 22100502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meldonium improves Huntington's disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor γ coactivator 1α expression.
    Di Cristo F; Finicelli M; Digilio FA; Paladino S; Valentino A; Scialò F; D'Apolito M; Saturnino C; Galderisi U; Giordano A; Melone MAB; Peluso G
    J Cell Physiol; 2019 Jun; 234(6):9233-9246. PubMed ID: 30362565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease.
    Siddiqui A; Chinta SJ; Mallajosyula JK; Rajagopolan S; Hanson I; Rane A; Melov S; Andersen JK
    Free Radic Biol Med; 2012 Aug; 53(4):993-1003. PubMed ID: 22705949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis.
    Sun L; Trajkovski M
    Metabolism; 2014 Feb; 63(2):272-82. PubMed ID: 24238035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.