BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 2175893)

  • 1. pH-dependent release of EDRF from rabbit aortic endothelium.
    Dembińska-Kieć A; Zmuda A; Gryglewski RJ
    Pol J Pharmacol Pharm; 1990; 42(3):265-74. PubMed ID: 2175893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultured dog aortic endothelial cells release vasodilatory products in response to acetylcholine and adenosine.
    Woodley N; Barclay JK
    Can J Physiol Pharmacol; 1996 Aug; 74(8):949-56. PubMed ID: 8960385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-derived relaxing factor is a selective relaxant of vascular smooth muscle.
    Shikano K; Berkowitz BA
    J Pharmacol Exp Ther; 1987 Oct; 243(1):55-60. PubMed ID: 3499504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of the potencies of EDRF-releasers from isolated rabbit aortic strips.
    Trybulec M; Dudek R; Radziszewski W; Swierkosz T; Zembowicz A
    Acta Physiol Pol; 1990; 41(1-3):79-86. PubMed ID: 1669477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta.
    Martin W; Villani GM; Jothianandan D; Furchgott RF
    J Pharmacol Exp Ther; 1985 Mar; 232(3):708-16. PubMed ID: 2983068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors.
    Blaise GA; Stewart DJ; Guérard MJ
    Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central role of intracellular calcium stores in acute flow- and agonist-evoked endothelial nitric oxide release.
    Hutcheson IR; Griffith TM
    Br J Pharmacol; 1997 Sep; 122(1):117-25. PubMed ID: 9298537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived relaxing factor (EDRF) from cultured and fresh endothelial cells.
    Gryglewski RJ; Trybulec M; Radziszewski W; Swierkosz T; Dudek R; Zembowicz A
    Biomed Biochim Acta; 1988; 47(10-11):S61-6. PubMed ID: 2470361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of endothelium-dependent relaxation by the amiloride analog dichlorobenzamil: possible role of Na+/Ca++ exchange in the release of endothelium-derived relaxant factor.
    Winquist RJ; Bunting PB; Schofield TL
    J Pharmacol Exp Ther; 1985 Dec; 235(3):644-50. PubMed ID: 3935774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hyperkalemia on neonatal endothelium and smooth muscle.
    He GW; Yang CQ; Rebeyka IM; Wilson GJ
    J Heart Lung Transplant; 1995; 14(1 Pt 1):92-101. PubMed ID: 7727480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of some products of protein catabolism on the endothelium-dependent and -independent relaxation of rabbit thoracic aorta rings.
    Sorrentino R; Sorrentino L; Pinto A
    J Pharmacol Exp Ther; 1993 Aug; 266(2):626-33. PubMed ID: 8355196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by sulfhydryl compounds of vascular relaxation induced by nitric oxide and endothelium-derived relaxing factor.
    Jia L; Furchgott RF
    J Pharmacol Exp Ther; 1993 Oct; 267(1):371-8. PubMed ID: 8229764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative pharmacology of endothelium-derived relaxing factor and nitric oxide.
    Shikano K; Long CJ; Ohlstein EH; Berkowitz BA
    J Pharmacol Exp Ther; 1988 Dec; 247(3):873-81. PubMed ID: 2849673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular reactivity to endothelium-derived relaxing factor in human umbilical artery at term pregnancy.
    Sugawara M; Tohse N; Nagashima M; Yabu H; Kudo R
    Can J Physiol Pharmacol; 1997 Jul; 75(7):818-24. PubMed ID: 9315349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ursolic acid mediates the vasorelaxant activity of Lepechinia caulescens via NO release in isolated rat thoracic aorta.
    Aguirre-Crespo F; Vergara-Galicia J; Villalobos-Molina R; Javier López-Guerrero J; Navarrete-Vázquez G; Estrada-Soto S
    Life Sci; 2006 Aug; 79(11):1062-8. PubMed ID: 16630635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of oxidative metabolism on endothelium-dependent vascular relaxation of isolated vessels.
    Cappelli-Bigazzi M; Battaglia C; Pannain S; Chiariello M; Ambrosio G
    J Mol Cell Cardiol; 1997 Mar; 29(3):871-9. PubMed ID: 9152848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasorelaxant effects induced by the antiangiogenic drug linomide in aortic and saphenous vein preparations of the rabbit.
    Amerini S; Filippi S; Parenti A; Ledda F; Ziche M
    Br J Pharmacol; 1997 Dec; 122(8):1739-45. PubMed ID: 9422822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Inhibitory effect of fentanyl citrate on endothelium-dependent relaxation in rat aorta].
    Lee K; Hatake K; Hishida S
    Masui; 1994 Jan; 43(1):89-95. PubMed ID: 8309061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitors of acyl-coenzyme A:lysolecithin acyltransferase activate the production of endothelium-derived vascular relaxing factor.
    Förstermann U; Goppelt-Strübe M; Frölich JC; Busse R
    J Pharmacol Exp Ther; 1986 Jul; 238(1):352-9. PubMed ID: 3487639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.