These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2175957)

  • 1. Bimodal operation of the ryanodine-sensitive transducer calcium channel.
    Bianchi CP; Narayan S
    Toxicon; 1990; 28(10):1173-81. PubMed ID: 2175957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation state of the ryanodine receptor and functional effects of ryanodine on skeletal muscle.
    Bianchi CP
    Biochem Pharmacol; 1997 Apr; 53(7):909-12. PubMed ID: 9174102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle.
    Fleischer S; Ogunbunmi EM; Dixon MC; Fleer EA
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7256-9. PubMed ID: 2414773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and purification of a transverse tubule coupling protein which binds to the ryanodine receptor of terminal cisternae at the triad junction in skeletal muscle.
    Chadwick CC; Inui M; Fleischer S
    J Biol Chem; 1988 Aug; 263(22):10872-7. PubMed ID: 3392045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad.
    Lamb GD; Stephenson DG
    J Physiol; 1990 Apr; 423():519-42. PubMed ID: 2167367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of propofol on Ca2+ regulation by malignant hyperthermia-susceptible muscle membranes.
    Fruen BR; Mickelson JR; Roghair TJ; Litterer LA; Louis CF
    Anesthesiology; 1995 May; 82(5):1274-82. PubMed ID: 7741303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506.
    Ahern GP; Junankar PR; Dulhunty AF
    FEBS Lett; 1994 Oct; 352(3):369-74. PubMed ID: 7523191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target size of the ryanodine receptor from junctional terminal cisternae of sarcoplasmic reticulum.
    McGrew SG; Boucek RJ; McIntyre JO; Jung CY; Fleischer S
    Biochemistry; 1987 Jun; 26(11):3183-7. PubMed ID: 3607018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Sukhareva M; Morrissette J; Coronado R
    Biophys J; 1994 Aug; 67(2):751-65. PubMed ID: 7948689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation and deactivation of sarcoplasmic reticulum calcium release channels: molecular dissection of mechanisms via novel semi-synthetic ryanoids.
    Bidasee KR; Besch HR; Gerzon K; Humerickhouse RA
    Mol Cell Biochem; 1995; 149-150():145-60. PubMed ID: 8569724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12.
    Ahern GP; Junankar PR; Dulhunty AF
    Biophys J; 1997 Jan; 72(1):146-62. PubMed ID: 8994600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.
    Chu A; Díaz-Muñoz M; Hawkes MJ; Brush K; Hamilton SL
    Mol Pharmacol; 1990 May; 37(5):735-41. PubMed ID: 1692609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of the calcium release channel of sarcoplasmic reticulum.
    Saito A; Inui M; Radermacher M; Frank J; Fleischer S
    J Cell Biol; 1988 Jul; 107(1):211-9. PubMed ID: 2455723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological effects of ryanodine derivatives on the sheep cardiac sarcoplasmic reticulum calcium-release channel.
    Tinker A; Sutko JL; Ruest L; Deslongchamps P; Welch W; Airey JA; Gerzon K; Bidasee KR; Besch HR; Williams AJ
    Biophys J; 1996 May; 70(5):2110-9. PubMed ID: 9172735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conducting and voltage-dependent behaviors of the native and purified SR Ca2+-release channels from the canine diaphragm.
    Picher M; Decrouy A; Proteau S; Rousseau E
    Biochim Biophys Acta; 1997 Sep; 1328(2):243-60. PubMed ID: 9315621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle.
    Volpe P; Salviati G; Di Virgilio F; Pozzan T
    Nature; 1985 Jul 25-31; 316(6026):347-9. PubMed ID: 2410794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of perchlorate on the molecules of excitation-contraction coupling of skeletal and cardiac muscle.
    Ma J; Anderson K; Shirokov R; Levis R; González A; Karhanek M; Hosey MM; Meissner G; Ríos E
    J Gen Physiol; 1993 Sep; 102(3):423-48. PubMed ID: 8245818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.