These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21760894)

  • 21. 'Vector white noise': a technique for mapping the motion receptive fields of direction-selective visual neurons.
    Srinivasan MV; Jin ZF; Stange G; Ibbotson MR
    Biol Cybern; 1993; 68(3):199-207. PubMed ID: 8452887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A directional tuning map of Drosophila elementary motion detectors.
    Maisak MS; Haag J; Ammer G; Serbe E; Meier M; Leonhardt A; Schilling T; Bahl A; Rubin GM; Nern A; Dickson BJ; Reiff DF; Hopp E; Borst A
    Nature; 2013 Aug; 500(7461):212-6. PubMed ID: 23925246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys.
    Felleman DJ; Kaas JH
    J Neurophysiol; 1984 Sep; 52(3):488-513. PubMed ID: 6481441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Primary visual cortex neurons that contribute to resolve the aperture problem.
    Guo K; Robertson R; Nevado A; Pulgarin M; Mahmoodi S; Young MP
    Neuroscience; 2006; 138(4):1397-406. PubMed ID: 16446037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local and global motion preferences in descending neurons of the fly.
    Wertz A; Haag J; Borst A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Dec; 195(12):1107-20. PubMed ID: 19830435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly.
    Haag J; Borst A
    J Neurosci; 2002 Apr; 22(8):3227-33. PubMed ID: 11943823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network.
    Borst A; Weber F
    PLoS One; 2011 Jan; 6(1):e16303. PubMed ID: 21305019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional properties of parietal visual neurons: radial organization of directionalities within the visual field.
    Steinmetz MA; Motter BC; Duffy CJ; Mountcastle VB
    J Neurosci; 1987 Jan; 7(1):177-91. PubMed ID: 3806193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern motion selectivity in population responses of area 18.
    Schmidt KE; Castelo-Branco M; Goebel R; Payne BR; Lomber SG; Galuske RA
    Eur J Neurosci; 2006 Oct; 24(8):2363-74. PubMed ID: 17074056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recurrent network interactions underlying flow-field selectivity of visual interneurons.
    Haag J; Borst A
    J Neurosci; 2001 Aug; 21(15):5685-92. PubMed ID: 11466440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons.
    Borst A; Egelhaaf M; Haag J
    J Comput Neurosci; 1995 Mar; 2(1):5-18. PubMed ID: 8521280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of self-motion by optic flow processing in single visual interneurons.
    Krapp HG; Hengstenberg R
    Nature; 1996 Dec; 384(6608):463-6. PubMed ID: 8945473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses of neurons in the cat posteromedial lateral suprasylvian cortex to moving texture patterns.
    Merabet L; Minville K; Ptito M; Casanova C
    Neuroscience; 2000; 97(4):611-23. PubMed ID: 10842006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics.
    Dürr V; Kurtz R; Egelhaaf M
    J Neurobiol; 2001 Mar; 46(4):289-300. PubMed ID: 11180156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The organization of receptive fields in area 18 neurones of the cat varies with the spatio-temporal characteristics of the visual stimulus.
    Galli L; Chalupa L; Maffei L; Bisti S
    Exp Brain Res; 1988; 71(1):1-7. PubMed ID: 3416944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the Reichardt elementary motion detector model.
    Hidayat E; Medvedev A; Nordström K
    Adv Exp Med Biol; 2015; 823():83-105. PubMed ID: 25381103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Center-surround interactions in the middle temporal visual area of the owl monkey.
    Born RT
    J Neurophysiol; 2000 Nov; 84(5):2658-69. PubMed ID: 11068007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceptual consequences of centre-surround antagonism in visual motion processing.
    Tadin D; Lappin JS; Gilroy LA; Blake R
    Nature; 2003 Jul; 424(6946):312-5. PubMed ID: 12867982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual motion response properties of neurons in dorsolateral pontine nucleus of alert monkey.
    Suzuki DA; May JG; Keller EL; Yee RD
    J Neurophysiol; 1990 Jan; 63(1):37-59. PubMed ID: 2299385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of Purkinje cells and mossy fibres in the flocculus of the monkey during sinusoidal movements of a visual pattern.
    Noda H; Warabi T
    J Physiol; 1987 Jun; 387():611-28. PubMed ID: 3656184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.