BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21760940)

  • 1. Phylogenomic evidence for a myxococcal contribution to the mitochondrial fatty acid beta-oxidation.
    Schlüter A; Ruiz-Trillo I; Pujol A
    PLoS One; 2011; 6(7):e21989. PubMed ID: 21760940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin.
    Thiergart T; Landan G; Schenk M; Dagan T; Martin WF
    Genome Biol Evol; 2012; 4(4):466-85. PubMed ID: 22355196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of two ancestral chaperone systems into one: the evolution of eukaryotic molecular chaperones in light of eukaryogenesis.
    Bogumil D; Alvarez-Ponce D; Landan G; McInerney JO; Dagan T
    Mol Biol Evol; 2014 Feb; 31(2):410-8. PubMed ID: 24188869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times.
    Theissen U; Hoffmeister M; Grieshaber M; Martin W
    Mol Biol Evol; 2003 Sep; 20(9):1564-74. PubMed ID: 12832624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry.
    Pittis AA; Gabaldón T
    Nature; 2016 Mar; 531(7592):101-4. PubMed ID: 26840490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes.
    Esser C; Ahmadinejad N; Wiegand C; Rotte C; Sebastiani F; Gelius-Dietrich G; Henze K; Kretschmann E; Richly E; Leister D; Bryant D; Steel MA; Lockhart PJ; Penny D; Martin W
    Mol Biol Evol; 2004 Sep; 21(9):1643-60. PubMed ID: 15155797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes.
    Hug LA; Stechmann A; Roger AJ
    Mol Biol Evol; 2010 Feb; 27(2):311-24. PubMed ID: 19805439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evidence for the evolution of the eukaryotic mitochondrial arginyl-tRNA synthetase from the prokaryotic suborder Cystobacterineae.
    Igloi GL
    FEBS Lett; 2020 Mar; 594(5):951-957. PubMed ID: 31705651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supertrees disentangle the chimerical origin of eukaryotic genomes.
    Pisani D; Cotton JA; McInerney JO
    Mol Biol Evol; 2007 Aug; 24(8):1752-60. PubMed ID: 17504772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer.
    Schnarrenberger C; Martin W
    Eur J Biochem; 2002 Feb; 269(3):868-83. PubMed ID: 11846788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite.
    Wang Z; Wu M
    PLoS One; 2014; 9(10):e110685. PubMed ID: 25333787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of eukaryotic cells from the perspective of peroxisomes: phylogenetic analyses of peroxisomal beta-oxidation enzymes support mitochondria-first models of eukaryotic cell evolution.
    Bolte K; Rensing SA; Maier UG
    Bioessays; 2015 Feb; 37(2):195-203. PubMed ID: 25394329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosymbiotic origin and differential loss of eukaryotic genes.
    Ku C; Nelson-Sathi S; Roettger M; Sousa FL; Lockhart PJ; Bryant D; Hazkani-Covo E; McInerney JO; Landan G; Martin WF
    Nature; 2015 Aug; 524(7566):427-32. PubMed ID: 26287458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial β-oxidation of saturated fatty acids in humans.
    Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D
    Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrion-related organelles in eukaryotic protists.
    Shiflett AM; Johnson PJ
    Annu Rev Microbiol; 2010; 64():409-29. PubMed ID: 20528687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells.
    Martin W; Russell MJ
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):59-83; discussion 83-5. PubMed ID: 12594918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our understanding of eukaryogenesis.
    Akanni WA; Siu-Ting K; Creevey CJ; McInerney JO; Wilkinson M; Foster PG; Pisani D
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1678):20140337. PubMed ID: 26323767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin of mitochondria: a genomics perspective.
    Andersson SG; Karlberg O; Canbäck B; Kurland CG
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):165-77; discussion 177-9. PubMed ID: 12594925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.
    Cotton JA; McInerney JO
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17252-5. PubMed ID: 20852068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.
    Singh H; Beckman K; Poulos A
    J Biol Chem; 1994 Apr; 269(13):9514-20. PubMed ID: 8144536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.