These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 2176096)

  • 21. Intrinsic cone adaptation modulates feedback efficiency from horizontal cells to cones.
    Fahrenfort I; Habets RL; Spekreijse H; Kamermans M
    J Gen Physiol; 1999 Oct; 114(4):511-24. PubMed ID: 10498670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.
    Ströh S; Puller C; Swirski S; Hölzel MB; van der Linde LIS; Segelken J; Schultz K; Block C; Monyer H; Willecke K; Weiler R; Greschner M; Janssen-Bienhold U; Dedek K
    J Neurosci; 2018 Feb; 38(8):2015-2028. PubMed ID: 29352045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat.
    Derrington AM; Lennie P
    J Physiol; 1982 Dec; 333():343-66. PubMed ID: 7182469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual adaptation--a reinterpretation: discussion.
    Laming D
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):2066-78. PubMed ID: 24322862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation.
    Cowan CS; Sabharwal J; Seilheimer RL; Wu SM
    Vision Res; 2017 Feb; 131():96-105. PubMed ID: 28087445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The dynamics of the cat retinal Y cell subunit.
    Victor JD
    J Physiol; 1988 Nov; 405():289-320. PubMed ID: 3255794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model for spatiotemporal frequency responses in the X cell pathway of the cat's retina.
    Chen EP; Freeman AW
    Vision Res; 1989; 29(3):271-91. PubMed ID: 2773339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of temporal noise and retinal illuminance on foveal flicker sensitivity.
    Rovamo J; Raninen A; Donner K
    Vision Res; 1999 Feb; 39(3):533-50. PubMed ID: 10341982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Receptive field structure of H1 horizontal cells in macaque monkey retina.
    Packer OS; Dacey DM
    J Vis; 2002; 2(4):272-92. PubMed ID: 12678578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit-Harper and Ferry-Porter laws.
    Rovamo J; Raninen A
    Vision Res; 1988; 28(7):785-90. PubMed ID: 3227655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dynamics of light adaptation in cat horizontal cell responses.
    Lankheet MJ; Van Wezel RJ; Prickaerts JH; van de Grind WA
    Vision Res; 1993 Jun; 33(9):1153-71. PubMed ID: 8333166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlated firing among major ganglion cell types in primate retina.
    Greschner M; Shlens J; Bakolitsa C; Field GD; Gauthier JL; Jepson LH; Sher A; Litke AM; Chichilnisky EJ
    J Physiol; 2011 Jan; 589(Pt 1):75-86. PubMed ID: 20921200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of center-surround antagonism on light adaptation in cones in the retina of the turtle.
    Burkhardt DA
    Vis Neurosci; 1995; 12(5):877-85. PubMed ID: 8924411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in retinal time scale under background light: observations on rods and ganglion cells in the frog retina.
    Donner K; Koskelainen A; Djupsund K; Hemilä S
    Vision Res; 1995 Aug; 35(16):2255-66. PubMed ID: 7571462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The roles of ionotropic glutamate receptors along the On and Off signaling pathways in the light-adapted mouse retina.
    Yang J; Nemargut JP; Wang GY
    Brain Res; 2011 May; 1390():70-9. PubMed ID: 21406186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():245-63. PubMed ID: 2607431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The retinal dopamine network alters the adaptational properties of retinal ganglion cells in the cat.
    Maguire G; Hamasaki DI
    J Neurophysiol; 1994 Aug; 72(2):730-41. PubMed ID: 7983531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation.
    Cook PB; McReynolds JS
    J Neurophysiol; 1998 Jan; 79(1):197-204. PubMed ID: 9425191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.