BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21761288)

  • 41. RNA editing activity is associated with splicing factors in lnRNP particles: The nuclear pre-mRNA processing machinery.
    Raitskin O; Cho DS; Sperling J; Nishikura K; Sperling R
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6571-6. PubMed ID: 11381114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic mapping uncovers cis-regulatory landscape of RNA editing.
    Ramaswami G; Deng P; Zhang R; Anna Carbone M; Mackay TFC; Billy Li J
    Nat Commun; 2015 Sep; 6():8194. PubMed ID: 26373807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ADAR mediates differential expression of polycistronic microRNAs.
    Chawla G; Sokol NS
    Nucleic Acids Res; 2014 Apr; 42(8):5245-55. PubMed ID: 24561617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The RNA editing enzymes ADARs: mechanism of action and human disease.
    Tomaselli S; Locatelli F; Gallo A
    Cell Tissue Res; 2014 Jun; 356(3):527-32. PubMed ID: 24770896
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity.
    Palladino MJ; Keegan LP; O'Connell MA; Reenan RA
    Cell; 2000 Aug; 102(4):437-49. PubMed ID: 10966106
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mouse models to elucidate the functional roles of adenosine-to-inosine editing.
    Rula EY; Emeson RB
    Methods Enzymol; 2007; 424():333-67. PubMed ID: 17662849
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial and temporal expression of dADAR mRNA and protein isoforms during embryogenesis in Drosophila melanogaster.
    Chen J; Lakshmi GG; Hays DL; McDowell KM; Ma E; Vaughn JC
    Differentiation; 2009 Dec; 78(5):312-20. PubMed ID: 19720447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatio-temporal regulation of ADAR editing during development in porcine neural tissues.
    Venø MT; Bramsen JB; Bendixen C; Panitz F; Holm IE; Öhman M; Kjems J
    RNA Biol; 2012 Aug; 9(8):1054-65. PubMed ID: 22858680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-wide analysis of consistently RNA edited sites in human blood reveals interactions with mRNA processing genes and suggests correlations with cell types and biological variables.
    Giacopuzzi E; Gennarelli M; Sacco C; Filippini A; Mingardi J; Magri C; Barbon A
    BMC Genomics; 2018 Dec; 19(1):963. PubMed ID: 30587120
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1.
    Wong SK; Lazinski DW
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15118-23. PubMed ID: 12399548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adar is essential for optimal presynaptic function.
    Maldonado C; Alicea D; Gonzalez M; Bykhovskaia M; Marie B
    Mol Cell Neurosci; 2013 Jan; 52():173-80. PubMed ID: 23127996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New Frontiers for Site-Directed RNA Editing: Harnessing Endogenous ADARs.
    Merkle T; Stafforst T
    Methods Mol Biol; 2021; 2181():331-349. PubMed ID: 32729089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adenosine-to-inosine genetic recoding is required in the adult stage nervous system for coordinated behavior in Drosophila.
    Jepson JE; Reenan RA
    J Biol Chem; 2009 Nov; 284(45):31391-400. PubMed ID: 19759011
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis.
    Yang L; Zhao L; Gan Z; He Z; Xu J; Gao X; Wang X; Han W; Chen L; Xu T; Li W; Liu Y
    FASEB J; 2010 Oct; 24(10):3720-32. PubMed ID: 20501795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma.
    Li Z; Tian Y; Tian N; Zhao X; Du C; Han L; Zhang H
    Oncol Rep; 2015 Jun; 33(6):2845-52. PubMed ID: 25873329
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adenovirus VAI RNA antagonizes the RNA-editing activity of the ADAR adenosine deaminase.
    Lei M; Liu Y; Samuel CE
    Virology; 1998 Jun; 245(2):188-96. PubMed ID: 9636358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Narrowing down the candidates of beneficial A-to-I RNA editing by comparing the recoding sites with uneditable counterparts.
    Zhao T; Ma L; Xu S; Cai W; Li H; Duan Y
    Nucleus; 2024 Dec; 15(1):2304503. PubMed ID: 38286757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2.
    Higuchi M; Maas S; Single FN; Hartner J; Rozov A; Burnashev N; Feldmeyer D; Sprengel R; Seeburg PH
    Nature; 2000 Jul; 406(6791):78-81. PubMed ID: 10894545
    [TBL] [Abstract][Full Text] [Related]  

  • 59. JACUSA: site-specific identification of RNA editing events from replicate sequencing data.
    Piechotta M; Wyler E; Ohler U; Landthaler M; Dieterich C
    BMC Bioinformatics; 2017 Jan; 18(1):7. PubMed ID: 28049429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanistic implications of enhanced editing by a HyperTRIBE RNA-binding protein.
    Xu W; Rahman R; Rosbash M
    RNA; 2018 Feb; 24(2):173-182. PubMed ID: 29127211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.