BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21761480)

  • 1. Quantitative three-dimensional imaging of live avian embryonic morphogenesis via micro-computed tomography.
    Henning AL; Jiang MX; Yalcin HC; Butcher JT
    Dev Dyn; 2011 Aug; 240(8):1949-57. PubMed ID: 21761480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography.
    Kim JS; Min J; Recknagel AK; Riccio M; Butcher JT
    Anat Rec (Hoboken); 2011 Jan; 294(1):1-10. PubMed ID: 21207522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of metallic nanoparticles as exogenous soft tissue contrast for live in vivo micro-computed tomography imaging of avian embryonic morphogenesis.
    Gregg CL; Butcher JT
    Dev Dyn; 2016 Oct; 245(10):1001-10. PubMed ID: 27447729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technique: imaging earliest tooth development in 3D using a silver-based tissue contrast agent.
    Raj MT; Prusinkiewicz M; Cooper DM; George B; Webb MA; Boughner JC
    Anat Rec (Hoboken); 2014 Feb; 297(2):222-33. PubMed ID: 24357499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis.
    Gregg CL; Recknagel AK; Butcher JT
    Methods Mol Biol; 2015; 1189():47-61. PubMed ID: 25245686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of microscopic X-ray computed tomography imaging: Japanese quail embryonic soft tissues with iodine staining.
    Tahara R; Larsson HC
    J Anat; 2013 Sep; 223(3):297-310. PubMed ID: 23869493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions.
    Metscher BD
    Dev Dyn; 2009 Mar; 238(3):632-40. PubMed ID: 19235724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative volumetric analysis of cardiac morphogenesis assessed through micro-computed tomography.
    Butcher JT; Sedmera D; Guldberg RE; Markwald RR
    Dev Dyn; 2007 Mar; 236(3):802-9. PubMed ID: 17013892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle contrast-enhanced micro-CT: A preclinical tool for the 3D imaging of liver and spleen in longitudinal mouse studies.
    Liu CN; Morin J; Dokmanovich M; Bluette CT; Goldstein R; Manickam B; Bagi CM
    J Pharmacol Toxicol Methods; 2019; 96():67-77. PubMed ID: 30738209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic contrast-enhanced micro-computed tomography correlates with 3-dimensional fluorescence ultramicroscopy in antiangiogenic therapy of breast cancer xenografts.
    Pöschinger T; Renner A; Eisa F; Dobosz M; Strobel S; Weber TG; Brauweiler R; Kalender WA; Scheuer W
    Invest Radiol; 2014 Jul; 49(7):445-56. PubMed ID: 24598441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional observation of the mouse embryo by micro-computed tomography: composition of the trigeminal ganglion.
    Aoyagi H; Tsuchikawa K; Iwasaki S
    Odontology; 2010 Feb; 98(1):26-30. PubMed ID: 20155504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray micro-computed-tomography in pediatric surgery: a new tool for studying embryos.
    Brosig S; Peukert N; Metzger R; Schneider H; Haak R; Gosemann J; Lacher M; Kluth D
    Pediatr Surg Int; 2018 Mar; 34(3):297-305. PubMed ID: 29167984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Spatial-Resolution Three-dimensional Imaging of Human Spinal Cord and Column Anatomy with Postmortem X-ray Phase-Contrast Micro-CT.
    Barbone GE; Bravin A; Mittone A; Grosu S; Ricke J; Cavaletti G; Djonov V; Coan P
    Radiology; 2021 Jan; 298(1):135-146. PubMed ID: 33107800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid 3-dimensional imaging of embryonic craniofacial morphology using microscopic computed tomography.
    Nagase T; Sasazaki Y; Kikuchi T; Machida M
    J Comput Assist Tomogr; 2008; 32(5):816-21. PubMed ID: 18830118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aortic arch morphogenesis and flow modeling in the chick embryo.
    Wang Y; Dur O; Patrick MJ; Tinney JP; Tobita K; Keller BB; Pekkan K
    Ann Biomed Eng; 2009 Jun; 37(6):1069-81. PubMed ID: 19337838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Strategy to Reveal the Latent Abnormalities in Human Embryonic Stages from a Large Embryo Collection.
    Kanahashi T; Yamada S; Tanaka M; Hirose A; Uwabe C; Kose K; Yoneyama A; Takeda T; Takakuwa T
    Anat Rec (Hoboken); 2016 Jan; 299(1):8-24. PubMed ID: 26474800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining.
    Degenhardt K; Wright AC; Horng D; Padmanabhan A; Epstein JA
    Circ Cardiovasc Imaging; 2010 May; 3(3):314-22. PubMed ID: 20190279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging.
    Goodall N; Kisiswa L; Prashar A; Faulkner S; Tokarczuk P; Singh K; Erichsen JT; Guggenheim J; Halfter W; Wride MA
    Exp Eye Res; 2009 Oct; 89(4):511-21. PubMed ID: 19540232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing sample-preparation protocols for X-ray phase-contrast CT of rodent spinal cords: Aldehyde fixations and osmium impregnation.
    Barbone GE; Bravin A; Mittone A; Kraiger MJ; Hrabě de Angelis M; Bossi M; Ballarini E; Rodriguez-Menendez V; Ceresa C; Cavaletti G; Coan P
    J Neurosci Methods; 2020 Jun; 339():108744. PubMed ID: 32353471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrotemporal CT data acquisition and reconstruction at low dose.
    Clark DP; Lee CL; Kirsch DG; Badea CT
    Med Phys; 2015 Nov; 42(11):6317-36. PubMed ID: 26520724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.