BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 2176149)

  • 21. Vanadate triggers the transition from chromosome condensation to decondensation in a mitotic mutant (tsTM13) inactivation of p34cdc2/H1 kinase and dephosphorylation of mitosis-specific histone H3.
    Ajiro K; Yasuda H; Tsuji H
    Eur J Biochem; 1996 Nov; 241(3):923-30. PubMed ID: 8944784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Positive regulation of cdc2 gene activity by protein phosphatase type 2A.
    Jaramillo-Babb VL; Sugarmans JL; Scavetta R; Wang SJ; Berndt N; Born TL; Glass CK; Schönthal AH
    J Biol Chem; 1996 Mar; 271(11):5988-92. PubMed ID: 8626381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase.
    Lorca T; Labbé JC; Devault A; Fesquet D; Capony JP; Cavadore JC; Le Bouffant F; Dorée M
    EMBO J; 1992 Jul; 11(7):2381-90. PubMed ID: 1321030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological effects of caffeine, okadaic acid and genistein in one-cell mouse embryos blocked in G2 by X-irradiation.
    Jacquet P; de Saint-Georges L; Barrio S; Baugnet-Mahieu L
    Int J Radiat Biol; 1995 Mar; 67(3):347-58. PubMed ID: 7897283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phorbol ester TPA rapidly prevents activation of p34cdc2 histone H1 kinase and concomitantly the transition from G2 phase to mitosis in synchronized HeLa cells.
    Barth H; Kinzel V
    Exp Cell Res; 1994 Jun; 212(2):383-8. PubMed ID: 8187833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. cdc25 is one of the MPM-2 antigens involved in the activation of maturation-promoting factor.
    Kuang J; Ashorn CL; Gonzalez-Kuyvenhoven M; Penkala JE
    Mol Biol Cell; 1994 Feb; 5(2):135-45. PubMed ID: 8019000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histone H1 kinase activity, germinal vesicle breakdown and M phase entry in mouse oocytes.
    Gavin AC; Cavadore JC; Schorderet-Slatkine S
    J Cell Sci; 1994 Jan; 107 ( Pt 1)():275-83. PubMed ID: 8175914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase.
    Lahav-Baratz S; Sudakin V; Ruderman JV; Hershko A
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9303-7. PubMed ID: 7568122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity.
    Kubelka M; Anger M; Kalous J; Schultz RM; Motlík J
    Mol Reprod Dev; 2002 Sep; 63(1):110-8. PubMed ID: 12211068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of histone H1 kinase expression, retinoblastoma protein phosphorylation, and cell proliferation by the phosphatase inhibitor okadaic acid.
    Schönthal A; Feramisco JR
    Oncogene; 1993 Feb; 8(2):433-41. PubMed ID: 8381221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth condition-induced precocious activation of p34cdc2 kinase inhibits the expression of developmental competence.
    Jantzen H; Schulze I
    Dev Biol; 1994 Nov; 166(1):311-22. PubMed ID: 7958455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of histone H3 (Ser10) phosphorylation in chromosome condensation without Cdc2 kinase and mitogen-activated protein kinase activation in pig oocytes.
    Bui HT; Yamaoka E; Miyano T
    Biol Reprod; 2004 Jun; 70(6):1843-51. PubMed ID: 14960481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An accumulation of p34cdc2 at the end of mouse oocyte growth correlates with the acquisition of meiotic competence.
    de Vant'ery C; Gavin AC; Vassalli JD; Schorderet-Slatkine S
    Dev Biol; 1996 Mar; 174(2):335-44. PubMed ID: 8631505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alteration of cell cycle-dependent histone phosphorylations by okadaic acid. Induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells.
    Ajiro K; Yoda K; Utsumi K; Nishikawa Y
    J Biol Chem; 1996 May; 271(22):13197-201. PubMed ID: 8662672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Okadaic acid overcomes the blocked cell cycle caused by depleting Cdc2-related kinases in Trypanosoma brucei.
    Li Z; Tu X; Wang CC
    Exp Cell Res; 2006 Nov; 312(18):3504-16. PubMed ID: 16949574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective induction of cell cycle regulatory genes cdk1 (p34cdc2), cyclins A/B, and the tumor suppressor gene Rb in transformed cells by okadaic acid.
    You J; Bird RC
    J Cell Physiol; 1995 Aug; 164(2):424-33. PubMed ID: 7622588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [From ovocyte to biochemistry of the cell cycle].
    Ozon R
    Verh K Acad Geneeskd Belg; 1991; 53(4):365-85. PubMed ID: 1659057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phosphatase inhibitor okadaic acid stimulates the TSH-induced G1-S phase transition in thyroid cells.
    Lazzereschi D; Coppa A; Minicione G; Lavitrano M; Fragomele F; Colletta G
    Exp Cell Res; 1997 Aug; 234(2):425-33. PubMed ID: 9260913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cycloheximide-induced activation of mouse eggs: effects on cdc2/cyclin B and MAP kinase activities.
    Moos J; Kopf GS; Schultz RM
    J Cell Sci; 1996 Apr; 109 ( Pt 4)():739-48. PubMed ID: 8718665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Okadaic acid overrides the S-phase check point and accelerates progression of G2-phase to induce premature mitosis in HeLa cells.
    Ghosh S; Schroeter D; Paweletz N
    Exp Cell Res; 1996 Aug; 227(1):165-9. PubMed ID: 8806464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.