BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21761505)

  • 1. Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance.
    Gordon EM; Stollstorff M; Vaidya CJ
    Hum Brain Mapp; 2012 Jul; 33(7):1536-52. PubMed ID: 21761505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance.
    Sala-Llonch R; Peña-Gómez C; Arenaza-Urquijo EM; Vidal-Piñeiro D; Bargalló N; Junqué C; Bartrés-Faz D
    Cortex; 2012 Oct; 48(9):1187-96. PubMed ID: 21872853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working memory load-dependent changes in cortical network connectivity estimated by machine learning.
    Eryilmaz H; Dowling KF; Hughes DE; Rodriguez-Thompson A; Tanner A; Huntington C; Coon WG; Roffman JL
    Neuroimage; 2020 Aug; 217():116895. PubMed ID: 32360929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precuneus is a functional core of the default-mode network.
    Utevsky AV; Smith DV; Huettel SA
    J Neurosci; 2014 Jan; 34(3):932-40. PubMed ID: 24431451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Working memory-related changes in functional connectivity persist beyond task disengagement.
    Gordon EM; Breeden AL; Bean SE; Vaidya CJ
    Hum Brain Mapp; 2014 Mar; 35(3):1004-17. PubMed ID: 23281202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional connectivity of intrinsic cognitive networks during resting state and task performance in preadolescent children.
    Jiang P; Vuontela V; Tokariev M; Lin H; Aronen ET; Ma Y; Carlson S
    PLoS One; 2018; 13(10):e0205690. PubMed ID: 30332489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
    Petrican R; Grady CL
    J Neurosci; 2017 Aug; 37(32):7711-7726. PubMed ID: 28716967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontoparietal networks involved in categorization and item working memory.
    Braunlich K; Gomez-Lavin J; Seger CA
    Neuroimage; 2015 Feb; 107():146-162. PubMed ID: 25482265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Scale Internetwork Functional Connectivity Mediates the Relationship between Serum Triglyceride and Working Memory in Young Adulthood.
    Wang C; Cai H; Sun X; Si L; Zhang M; Xu Y; Qian Y; Zhu J
    Neural Plast; 2020; 2020():8894868. PubMed ID: 33204252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between frontoparietal control and default networks supports social working memory and empathy.
    Xin F; Lei X
    Soc Cogn Affect Neurosci; 2015 Aug; 10(8):1144-52. PubMed ID: 25556209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The presupplementary area within the language network: a resting state functional magnetic resonance imaging functional connectivity analysis.
    Ter Minassian A; Ricalens E; Nguyen The Tich S; Dinomais M; Aubé C; Beydon L
    Brain Connect; 2014 Aug; 4(6):440-53. PubMed ID: 24939724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An energy-efficient intrinsic functional organization of human working memory: A resting-state functional connectivity study.
    Liu H; Yu H; Li Y; Qin W; Xu L; Yu C; Liang M
    Behav Brain Res; 2017 Jan; 316():66-73. PubMed ID: 27569182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfiguration of Brain Network Architectures between Resting-State and Complexity-Dependent Cognitive Reasoning.
    Hearne LJ; Cocchi L; Zalesky A; Mattingley JB
    J Neurosci; 2017 Aug; 37(35):8399-8411. PubMed ID: 28760864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.
    Magnuson ME; Thompson GJ; Schwarb H; Pan WJ; McKinley A; Schumacher EH; Keilholz SD
    Brain Imaging Behav; 2015 Dec; 9(4):854-67. PubMed ID: 25563228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of canonical intrinsic connectivity networks across tasks and monozygotic twin pairs.
    Moodie CA; Wisner KM; MacDonald AW
    Hum Brain Mapp; 2014 Nov; 35(11):5532-49. PubMed ID: 24984861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
    O'Connell MA; Basak C
    Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.
    Wang X; Jiao Y; Tang T; Wang H; Lu Z
    Neuroscience; 2013 Dec; 254():404-26. PubMed ID: 24042040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?
    Alavash M; Doebler P; Holling H; Thiel CM; Gießing C
    Neuroimage; 2015 Mar; 108():182-93. PubMed ID: 25536495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of task modality and stimulus frequency in paced serial addition tests on functional brain activity.
    Gielen J; Wiels W; Van Schependom J; Laton J; Van Hecke W; Parizel PM; D'hooghe MB; Nagels G
    PLoS One; 2018; 13(3):e0194388. PubMed ID: 29543871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.