BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21761644)

  • 1. Segmentation of 3D RF echocardiography using a multiframe spatio-temporal predictor.
    Pearlman PC; Tagare HD; Lin BA; Sinusas AJ; Duncan JS
    Inf Process Med Imaging; 2011; 22():37-48. PubMed ID: 21761644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of 3D radio frequency echocardiography using a spatio-temporal predictor.
    Pearlman PC; Tagare HD; Lin BA; Sinusas AJ; Duncan JS
    Med Image Anal; 2012 Feb; 16(2):351-60. PubMed ID: 22078842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D radio frequency ultrasound cardiac segmentation using a linear predictor.
    Pearlman PC; Tagare HD; Sinusas AJ; Duncan JS
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):502-9. PubMed ID: 20879268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint.
    Zhu Y; Papademetris X; Sinusas A; Duncan JS
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):44-51. PubMed ID: 18051042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust model for segmenting images with/without intensity inhomogeneities.
    Li C; Wang X; Eberl S; Fulham M; Feng DD
    IEEE Trans Image Process; 2013 Aug; 22(8):3296-309. PubMed ID: 23693130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint.
    Zhu Y; Papademetris X; Sinusas AJ; Duncan JS
    Med Image Anal; 2010 Jun; 14(3):429-48. PubMed ID: 20350833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking.
    Rajpoot K; Grau V; Noble JA; Becher H; Szmigielski C
    Med Image Anal; 2011 Aug; 15(4):514-28. PubMed ID: 21420892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LV segmentation through the analysis of radio frequency ultrasonic images.
    Yan P; Jia CX; Sinusas A; Thiele K; O'Donnell M; Duncan JS
    Inf Process Med Imaging; 2007; 20():233-44. PubMed ID: 17633703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation-based discrimination between cardiac tissue and blood for segmentation of the left ventricle in 3-D echocardiographic images.
    Saris AE; Nillesen MM; Lopata RG; de Korte CL
    Ultrasound Med Biol; 2014 Mar; 40(3):596-610. PubMed ID: 24412178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time 3D interactive segmentation of echocardiographic data through user-based deformation of B-spline explicit active surfaces.
    Barbosa D; Heyde B; Cikes M; Dietenbeck T; Claus P; Friboulet D; Bernard O; D'hooge J
    Comput Med Imaging Graph; 2014 Jan; 38(1):57-67. PubMed ID: 24332441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamical shape prior for LV segmentation from RT3D echocardiography.
    Zhu Y; Papademetris X; Sinusas AJ; Duncan JS
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):206-13. PubMed ID: 20425989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-driven cardiac left ventricle segmentation for the evaluation of multiview fused real-time 3-dimensional echocardiography images.
    Rajpoot K; Noble JA; Grau V; Szmigielski C; Becher H
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):893-900. PubMed ID: 20426196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D cardiac segmentation using temporal correlation of radio frequency ultrasound data.
    Nillesen MM; Lopata RG; Huisman HJ; Thijssen JM; Kapusta L; de Korte CL
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):927-34. PubMed ID: 20426200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LV motion tracking from 3D echocardiography using textural and structural information.
    Myronenko A; Song X; Sahn DJ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):428-35. PubMed ID: 18044597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A framework for quantification and visualization of segmentation accuracy and variability in 3D lateral ventricle ultrasound images of preterm neonates.
    Chen Y; Qiu W; Kishimoto J; Gao Y; Chan RH; de Ribaupierre S; Fenster A; Chiu B
    Med Phys; 2015 Nov; 42(11):6387-405. PubMed ID: 26520730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography.
    Ma M; van Stralen M; Reiber JH; Bosch JG; Lelieveldt BP
    Med Image Anal; 2010 Aug; 14(4):582-93. PubMed ID: 20537578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained active appearance models for segmentation of triplane echocardiograms.
    HansegÄrd J; Urheim S; Lunde K; Rabben SI
    IEEE Trans Med Imaging; 2007 Oct; 26(10):1391-400. PubMed ID: 17948729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-based registration of multi-view real-time three-dimensional echocardiographic sequences.
    Grau V; Becher H; Noble JA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):612-9. PubMed ID: 17354941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.
    Zhang Y; Gao Y; Li H; Teng Y; Kang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1291-6. PubMed ID: 26405890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic framework for tracking in artifact-prone 3D echocardiograms.
    Leung KY; Danilouchkine MG; van Stralen M; de Jong N; van der Steen AF; Bosch JG
    Med Image Anal; 2010 Dec; 14(6):750-8. PubMed ID: 20584623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.