These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21761673)

  • 1. Identifying nuclear phenotypes using semi-supervised metric learning.
    Singh S; Janoos F; Pécot T; Caserta E; Leone G; Rittscher J; Machiraju R
    Inf Process Med Imaging; 2011; 22():398-410. PubMed ID: 21761673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised learning framework for screening nuclei in tissue sections.
    Nandy K; Gudla PR; Amundsen R; Meaburn KJ; Misteli T; Lockett SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5989-92. PubMed ID: 22255704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Person re-identification over camera networks using multi-task distance metric learning.
    Ma L; Yang X; Tao D
    IEEE Trans Image Process; 2014 Aug; 23(8):3656-70. PubMed ID: 24956368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cells tracking in a live zebrafish embryo.
    Melani C; Campana M; Lombardot B; Rizzi B; Veronesi F; Zanella C; Bourgine P; Mikula K; Peyriéras N; Sarti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1631-4. PubMed ID: 18002285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-supervised online metric learning with low rank constraint for scene categorization.
    Cong Y; Liu J; Yuan J; Luo J
    IEEE Trans Image Process; 2013 Aug; 22(8):3179-91. PubMed ID: 23629859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimal transportation approach for nuclear structure-based pathology.
    Wang W; Ozolek JA; Slepčev D; Lee AB; Chen C; Rohde GK
    IEEE Trans Med Imaging; 2011 Mar; 30(3):621-31. PubMed ID: 20977984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue.
    Luck BL; Carlson KD; Bovik AC; Richards-Kortum RR
    IEEE Trans Image Process; 2005 Sep; 14(9):1265-76. PubMed ID: 16190463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised nasopharyngeal carcinoma lesion extraction from magnetic resonance images using online spectral clustering with a learned metric.
    Huang W; Chan KL; Gao Y; Zhou J; Chong V
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):51-8. PubMed ID: 18979731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agreement-based semi-supervised learning for skull stripping.
    Iglesias JE; Liu CY; Thompson P; Tu Z
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):147-54. PubMed ID: 20879394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D dendrite reconstruction and spine identification.
    Zhou W; Li H; Zhou X
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):18-26. PubMed ID: 18982585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable histopathological image analysis via active learning.
    Zhu Y; Zhang S; Liu W; Metaxas DN
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 3):369-76. PubMed ID: 25320821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse bayesian learning of filters for efficient image expansion.
    Kanemura A; Maeda S; Ishii S
    IEEE Trans Image Process; 2010 Jun; 19(6):1480-90. PubMed ID: 20215080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised feature learning for curvilinear structure segmentation.
    Becker C; Rigamonti R; Lepetit V; Fua P
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):526-33. PubMed ID: 24505707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and automated multidimensional fluorescence microscopy profiling of 3D human breast cultures.
    Park CC; Georgescu W; Polyzos A; Pham C; Ahmed KM; Zhang H; Costes SV
    Integr Biol (Camb); 2013 Apr; 5(4):681-91. PubMed ID: 23407655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of the number of peroxisomes in yeast cells by automated image analysis.
    Niemistö A; Selinummi J; Saleem R; Shmulevich I; Aitchison J; Yli-Harja O
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2353-6. PubMed ID: 17945710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially-varying metric learning for diffeomorphic image registration: a variational framework.
    Vialard FX; Risser L
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):227-34. PubMed ID: 25333122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-constrained multiple instance learning for histopathology image segmentation.
    Xu Y; Zhang J; Chang EI; Lai M; Tu Z
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):623-30. PubMed ID: 23286183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell words: modelling the visual appearance of cells in histopathology images.
    Sirinukunwattana K; Khan AM; Rajpoot NM
    Comput Med Imaging Graph; 2015 Jun; 42():16-24. PubMed ID: 25498246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empowering multiple instance histopathology cancer diagnosis by cell graphs.
    Kandemir M; Zhang C; Hamprecht FA
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):228-35. PubMed ID: 25485383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of cells from 3-D confocal images of live zebrafish embryo.
    Zanella C; Rizzi B; Melani C; Campana M; Bourgine P; Mikula K; Peyriéras N; Sarti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6028-31. PubMed ID: 18003388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.