These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 21761846)
1. Stable dispersions of hybrid nanoparticles induced by stereocomplexation between enantiomeric poly(lactide) star polymers. Tan BH; Hussain H; Lin TT; Chua YC; Leong YW; Tjiu WW; Wong PK; He CB Langmuir; 2011 Sep; 27(17):10538-47. PubMed ID: 21761846 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of star-like hybrid POSS-(PDMAEMA-b-PDLA) Fan X; Cao M; Zhang X; Li Z Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():211-216. PubMed ID: 28482519 [TBL] [Abstract][Full Text] [Related]
3. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354 [TBL] [Abstract][Full Text] [Related]
4. Poly(ethylene glycol) conjugated poly(lactide)-based polyelectrolytes: synthesis and formation of stable self-assemblies induced by stereocomplexation. Li Z; Yuan D; Fan X; Tan BH; He C Langmuir; 2015 Mar; 31(8):2321-33. PubMed ID: 25661108 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of pH-sensitive mPEG-PH-PLA nanoparticles by stereocomplexation between enantiomeric polylactides. Liu R; He B; Li D; Lai Y; Tang JZ; Gu Z Macromol Rapid Commun; 2012 Jun; 33(12):1061-6. PubMed ID: 22514133 [TBL] [Abstract][Full Text] [Related]
6. Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications. Huang L; Tan J; Li W; Zhou L; Liu Z; Luo B; Lu L; Zhou C J Mech Behav Biomed Mater; 2019 Feb; 90():604-614. PubMed ID: 30500698 [TBL] [Abstract][Full Text] [Related]
7. Nano-ordered surface morphologies by stereocomplexation of the enantiomeric polylactide chains: specific interactions of surface-immobilized poly(D-lactide) and poly(ethylene glycol)-poly(L-lactide) block copolymers. Nakajima M; Nakajima H; Fujiwara T; Kimura Y; Sasaki S Langmuir; 2014 Nov; 30(46):14030-8. PubMed ID: 25365934 [TBL] [Abstract][Full Text] [Related]
8. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Sun L; Pitto-Barry A; Kirby N; Schiller TL; Sanchez AM; Dyson MA; Sloan J; Wilson NR; O'Reilly RK; Dove AP Nat Commun; 2014 Dec; 5():5746. PubMed ID: 25517544 [TBL] [Abstract][Full Text] [Related]
9. Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery. Li W; Fan X; Wang X; Shang X; Wang Q; Lin J; Hu Z; Li Z Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():688-695. PubMed ID: 30033303 [TBL] [Abstract][Full Text] [Related]
10. Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation. Huang G; Du Z; Yuan Z; Gu L; Cai Q; Yang X J Mech Behav Biomed Mater; 2018 Feb; 78():10-19. PubMed ID: 29128694 [TBL] [Abstract][Full Text] [Related]
11. Rapid Stereocomplexation between Enantiomeric Comb-Shaped Cellulose-g-poly(L-lactide) Nanohybrids and Poly(D-lactide) from the Melt. Ma P; Jiang L; Xu P; Dong W; Chen M; Lemstra PJ Biomacromolecules; 2015 Nov; 16(11):3723-9. PubMed ID: 26444105 [TBL] [Abstract][Full Text] [Related]
12. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation. Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403 [TBL] [Abstract][Full Text] [Related]
14. Molecular weight dependence of the poly(L-lactide)/poly(D-lactide) Stereocomplex at the air-water interface. Duan Y; Liu J; Sato H; Zhang J; Tsuji H; Ozaki Y; Yan S Biomacromolecules; 2006 Oct; 7(10):2728-35. PubMed ID: 17025346 [TBL] [Abstract][Full Text] [Related]
15. Experimental evidence for immiscibility of enantiomeric polymers: Phase separation of high-molecular-weight poly(ʟ-lactide)/poly(ᴅ-lactide) blends and its impact on hindering stereocomplex crystallization. Chen Y; Lan Q Int J Biol Macromol; 2024 Mar; 260(Pt 1):129459. PubMed ID: 38232890 [TBL] [Abstract][Full Text] [Related]
16. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. Yu J; Qiu Z ACS Appl Mater Interfaces; 2011 Mar; 3(3):890-7. PubMed ID: 21361280 [TBL] [Abstract][Full Text] [Related]
17. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt. Tsuji H; Tezuka Y Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428 [TBL] [Abstract][Full Text] [Related]
18. Poly(lactic acid) stereocomplexes: A decade of progress. Tsuji H Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192 [TBL] [Abstract][Full Text] [Related]
19. Stereocomplexation Assisted Assembly of Poly(γ-glutamic Acid)-graft-polylactide Nano-micelles and Their Efficacy as Anticancer Drug Carrier. Dai S; Feng Y; Li S; Chen Y; Liu M; Zhang C; Zhang W; Yin Y Anticancer Agents Med Chem; 2018; 18(2):302-311. PubMed ID: 28901265 [TBL] [Abstract][Full Text] [Related]
20. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]