These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 2176185)

  • 1. Ultrastructural, biochemical, and immunologic evidence of receptor-mediated endocytosis in the crystalline lens.
    Brown HG; Pappas GD; Ireland ME; Kuszak JR
    Invest Ophthalmol Vis Sci; 1990 Dec; 31(12):2579-92. PubMed ID: 2176185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrastructural analysis of the epithelial-fiber interface (EFI) in primate lenses.
    Kuszak JR; Novak LA; Brown HG
    Exp Eye Res; 1995 Nov; 61(5):579-97. PubMed ID: 8654501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of gap junctions and square array junctions in the mammalian lens.
    Costello MJ; McIntosh TJ; Robertson JD
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):975-89. PubMed ID: 2722452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocytosis of macromolecules in the lenses of guinea pig and rabbit.
    Lo WK; Zhang W
    Lens Eye Toxic Res; 1989; 6(4):603-12. PubMed ID: 2487273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial organization of the mammalian lens.
    Zampighi GA; Eskandari S; Kreman M
    Exp Eye Res; 2000 Oct; 71(4):415-35. PubMed ID: 10995562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic surface ultrastructures of gap junctions in bovine lens fibers.
    Hatae T; Iida H; Kuraoka A; Shibata Y
    Invest Ophthalmol Vis Sci; 1993 Jun; 34(7):2164-73. PubMed ID: 8505199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in lenses of mice lacking the gap junction protein connexin43.
    Gao Y; Spray DC
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1198-209. PubMed ID: 9620080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcytotic passage of albumin through lens epithelial cells.
    Sabah JR; Schultz BD; Brown ZW; Nguyen AT; Reddan J; Takemoto LJ
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1237-44. PubMed ID: 17325168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The surface morphology of embryonic and adult chick lens-fiber cells.
    Kuszak J; Alcala J; Maisel H
    Am J Anat; 1980 Dec; 159(4):395-410. PubMed ID: 7223675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarized distribution of coated pits and coated vesicles in the rat lens: an electron microscopy and WGA-HRP tracer study.
    Lo WK; Mills A; Zhang W; Zhu H
    Curr Eye Res; 1991 Dec; 10(12):1151-63. PubMed ID: 1724956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane alterations during cataract development in the Nakano mouse lens.
    Tanaka M; Russell P; Smith S; Uga S; Kuwabara T; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1980 Jun; 19(6):619-29. PubMed ID: 7380622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of aqueous and vitreous on fiber differentiation and extracellular matrix accumulation in lens epithelial explants.
    Lovicu FJ; Chamberlain CG; McAvoy JW
    Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1459-69. PubMed ID: 7775124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A correlated study of metabolic cell communication and gap junction distribution in the adult frog lens.
    Prescott A; Duncan G; Van Marle J; Vrensen G
    Exp Eye Res; 1994 Jun; 58(6):737-46. PubMed ID: 7925713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in lens permeability during galactose cataract development in rat.
    Johnson MJ; Unakar NJ
    Lens Eye Toxic Res; 1992; 9(2):93-113. PubMed ID: 1375837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of and cholesterol distribution in M-cell membranes in guinea pig, rat, and mouse Peyer's patches.
    Madara JL; Bye WA; Trier JS
    Gastroenterology; 1984 Nov; 87(5):1091-103. PubMed ID: 6479532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of type I and type III procollagen by lens epithelial cells.
    Sawhney RS
    Invest Ophthalmol Vis Sci; 1993 Jun; 34(7):2195-202. PubMed ID: 8505201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gap junctions containing alpha8-connexin (MP70) in the adult mammalian lens epithelium suggests a re-evaluation of its role in the lens.
    Dahm R; van Marle J; Prescott AR; Quinlan RA
    Exp Eye Res; 1999 Jul; 69(1):45-56. PubMed ID: 10375448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Main intrinsic polypeptide proteolysis and fiber cell membrane domains.
    FitzGerald PG
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):795-805. PubMed ID: 3553058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of differentiation of human lens epithelium in tissue culture by changes in cell-substrate adhesion.
    Arita T; Lin LR; Susan SR; Reddy VN
    Invest Ophthalmol Vis Sci; 1990 Nov; 31(11):2395-404. PubMed ID: 2243005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability studies in neonatal rat lens epithelium.
    Unakar NJ; Johnson MJ; Hynes K
    Lens Eye Toxic Res; 1991; 8(1):75-99. PubMed ID: 2049346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.