These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21762019)
1. Fisher information at the edge of chaos in random Boolean networks. Wang XR; Lizier JT; Prokopenko M Artif Life; 2011; 17(4):315-29. PubMed ID: 21762019 [TBL] [Abstract][Full Text] [Related]
2. Modular random Boolean networks. Poblanno-Balp R; Gershenson C Artif Life; 2011; 17(4):331-51. PubMed ID: 21762022 [TBL] [Abstract][Full Text] [Related]
3. Boolean networks with biologically relevant rules show ordered behavior. Nikolajewa S; Friedel M; Wilhelm T Biosystems; 2007; 90(1):40-7. PubMed ID: 17188807 [TBL] [Abstract][Full Text] [Related]
4. Information dynamics in small-world Boolean networks. Lizier JT; Pritam S; Prokopenko M Artif Life; 2011; 17(4):293-314. PubMed ID: 21762020 [TBL] [Abstract][Full Text] [Related]
5. Diversity of temporal correlations between genes in models of noisy and noiseless gene networks. Ribeiro AS; Lloyd-Price J; Chowdhury S; Yli-Harja O Biosystems; 2011; 104(2-3):136-44. PubMed ID: 21356270 [TBL] [Abstract][Full Text] [Related]
6. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics. Hanel R; Pöchacker M; Thurner S Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1933):5583-96. PubMed ID: 21078635 [TBL] [Abstract][Full Text] [Related]
7. A multi-objective differential evolutionary approach toward more stable gene regulatory networks. Esmaeili A; Jacob C Biosystems; 2009 Dec; 98(3):127-36. PubMed ID: 19853016 [TBL] [Abstract][Full Text] [Related]
8. Guiding the self-organization of random Boolean networks. Gershenson C Theory Biosci; 2012 Sep; 131(3):181-91. PubMed ID: 22127955 [TBL] [Abstract][Full Text] [Related]
9. Comparing Boolean and piecewise affine differential models for genetic networks. Chaves M; Tournier L; Gouzé JL Acta Biotheor; 2010 Sep; 58(2-3):217-32. PubMed ID: 20665073 [TBL] [Abstract][Full Text] [Related]
10. Cognitive aspects of chaos in random networks. Aiello GL Nonlinear Dynamics Psychol Life Sci; 2012 Jan; 16(1):23-35. PubMed ID: 22196110 [TBL] [Abstract][Full Text] [Related]
11. Genomic regulation modeled as a network with basins of attraction. Wuensche A Pac Symp Biocomput; 1998; ():89-102. PubMed ID: 9697174 [TBL] [Abstract][Full Text] [Related]
12. Perturbation avalanches and criticality in gene regulatory networks. Rämö P; Kesseli J; Yli-Harja O J Theor Biol; 2006 Sep; 242(1):164-70. PubMed ID: 16574157 [TBL] [Abstract][Full Text] [Related]
13. Dynamical properties of a boolean model of gene regulatory network with memory. Graudenzi A; Serra R; Villani M; Damiani C; Colacci A; Kauffman SA J Comput Biol; 2011 Oct; 18(10):1291-303. PubMed ID: 21214342 [TBL] [Abstract][Full Text] [Related]
14. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
15. Quantifying local structure effects in network dynamics. Ribeiro AS; Lloyd-Price J; Kesseli J; Häkkinen A; Yli-Harja O Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056108. PubMed ID: 19113191 [TBL] [Abstract][Full Text] [Related]
16. Maximum number of fixed points in regulatory Boolean networks. Aracena J Bull Math Biol; 2008 Jul; 70(5):1398-409. PubMed ID: 18306974 [TBL] [Abstract][Full Text] [Related]
17. Phase transition in a class of nonlinear random networks. Andrecut M; Kauffman SA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):022105. PubMed ID: 20866861 [TBL] [Abstract][Full Text] [Related]
19. On the origin of chaos in autonomous Boolean networks. Cavalcante HL; Gauthier DJ; Socolar JE; Zhang R Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):495-513. PubMed ID: 20008414 [TBL] [Abstract][Full Text] [Related]