These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21762022)

  • 21. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.
    Li XY; Yang GW; Zheng DS; Guo WS; Hung WN
    Genet Mol Res; 2015 Apr; 14(2):4238-44. PubMed ID: 25966195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximum number of fixed points in regulatory Boolean networks.
    Aracena J
    Bull Math Biol; 2008 Jul; 70(5):1398-409. PubMed ID: 18306974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing Boolean and piecewise affine differential models for genetic networks.
    Chaves M; Tournier L; Gouzé JL
    Acta Biotheor; 2010 Sep; 58(2-3):217-32. PubMed ID: 20665073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Damage spreading in spatial and small-world random Boolean networks.
    Lu Q; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022806. PubMed ID: 25353533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Algorithm for Finding the Singleton Attractors and Pre-Images in Strong-Inhibition Boolean Networks.
    He Z; Zhan M; Liu S; Fang Z; Yao C
    PLoS One; 2016; 11(11):e0166906. PubMed ID: 27861624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulatory patterns in molecular interaction networks.
    Murrugarra D; Laubenbacher R
    J Theor Biol; 2011 Nov; 288():66-72. PubMed ID: 21872607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ensembles, dynamics, and cell types: Revisiting the statistical mechanics perspective on cellular regulation.
    Bornholdt S; Kauffman S
    J Theor Biol; 2019 Apr; 467():15-22. PubMed ID: 30711453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attractor-Specific and Common Expression Values in Random Boolean Network Models (with a Preliminary Look at Single-Cell Data).
    Villani M; D'Addese G; Kauffman SA; Serra R
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noisy attractors and ergodic sets in models of gene regulatory networks.
    Ribeiro AS; Kauffman SA
    J Theor Biol; 2007 Aug; 247(4):743-55. PubMed ID: 17543998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring Boolean networks with perturbation from sparse gene expression data: a general model applied to the interferon regulatory network.
    Yu L; Watterson S; Marshall S; Ghazal P
    Mol Biosyst; 2008 Oct; 4(10):1024-30. PubMed ID: 19082142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean delay equations).
    Oktem H; Pearson R; Egiazarian K
    Chaos; 2003 Dec; 13(4):1167-74. PubMed ID: 14604408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biologically meaningful update rules increase the critical connectivity of generalized Kauffman networks.
    Wittmann DM; Marr C; Theis FJ
    J Theor Biol; 2010 Oct; 266(3):436-48. PubMed ID: 20654629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient algorithm for finding attractors in synchronous Boolean networks with biochemical applications.
    Zheng D; Yang G; Li X; Wang Z; Hung WN
    Genet Mol Res; 2013 Oct; 12(4):4656-66. PubMed ID: 24222242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. P_UNSAT approach of attractor calculation for Boolean gene regulatory networks.
    He Q; Xia Z; Lin B
    J Theor Biol; 2018 Jun; 447():171-177. PubMed ID: 29605228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of Boolean network models.
    Veliz-Cuba A
    J Theor Biol; 2011 Nov; 289():167-72. PubMed ID: 21907211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstruction of gene regulatory networks under the finite state linear model.
    Ruklisa D; Brazma A; Viksna J
    Genome Inform; 2005; 16(2):225-36. PubMed ID: 16901105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reliability of regulatory networks and its evolution.
    Braunewell S; Bornholdt S
    J Theor Biol; 2009 Jun; 258(4):502-12. PubMed ID: 19254727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types.
    Serra R; Villani M; Barbieri A; Kauffman SA; Colacci A
    J Theor Biol; 2010 Jul; 265(2):185-93. PubMed ID: 20399217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling the evolution of genetic regulatory networks.
    Quayle AP; Bullock S
    J Theor Biol; 2006 Feb; 238(4):737-53. PubMed ID: 16095624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks.
    Greenbury SF; Johnston IG; Smith MA; Doye JP; Louis AA
    J Theor Biol; 2010 Nov; 267(1):48-61. PubMed ID: 20696172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.