BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2176242)

  • 1. Structural features of a regulatory nucleosome.
    Piña B; Barettino D; Truss M; Beato M
    J Mol Biol; 1990 Dec; 216(4):975-90. PubMed ID: 2176242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positioning and stability of nucleosomes on MMTV 3'LTR sequences.
    Flaus A; Richmond TJ
    J Mol Biol; 1998 Jan; 275(3):427-41. PubMed ID: 9466921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo binding of proteins to stably integrated MMTV DNA in murine cell lines: occupancy of NFI and OTF1 binding sites in the absence and presence of glucocorticoids.
    Härtig E; Cato AC
    Cell Mol Biol Res; 1994; 40(7-8):643-52. PubMed ID: 7787882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning.
    Lowary PT; Widom J
    J Mol Biol; 1998 Feb; 276(1):19-42. PubMed ID: 9514715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA rotational positioning in a regulatory nucleosome is determined by base sequence. An algorithm to model the preferred superhelix.
    Piña B; Truss M; Ohlenbusch H; Postma J; Beato M
    Nucleic Acids Res; 1990 Dec; 18(23):6981-7. PubMed ID: 2175885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome assembly on telomeric sequences.
    Rossetti L; Cacchione S; Fuà M; Savino M
    Biochemistry; 1998 May; 37(19):6727-37. PubMed ID: 9578556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mouse mammary tumour virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1.
    Spangenberg C; Eisfeld K; Stünkel W; Luger K; Flaus A; Richmond TJ; Truss M; Beato M
    J Mol Biol; 1998 May; 278(4):725-39. PubMed ID: 9614938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames.
    Fragoso G; John S; Roberts MS; Hager GL
    Genes Dev; 1995 Aug; 9(15):1933-47. PubMed ID: 7649476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosomes reconstituted in vitro on mouse mammary tumor virus B region DNA occupy multiple translational and rotational frames.
    Roberts MS; Fragoso G; Hager GL
    Biochemistry; 1995 Sep; 34(38):12470-80. PubMed ID: 7547993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attraction, phasing and neighbour effects of histone octamers on curved DNA.
    Costanzo G; Di Mauro E; Salina G; Negri R
    J Mol Biol; 1990 Nov; 216(2):363-74. PubMed ID: 2174975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo.
    Fraser RM; Allan J; Simmen MW
    J Mol Biol; 2006 Dec; 364(4):582-98. PubMed ID: 17027853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clonal isolation of different strains of mouse mammary tumor virus-like DNA sequences from both the breast tumors and non-Hodgkin's lymphomas of individual patients diagnosed with both malignancies.
    Etkind PR; Stewart AF; Dorai T; Purcell DJ; Wiernik PH
    Clin Cancer Res; 2004 Sep; 10(17):5656-64. PubMed ID: 15355890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin structure modulates transcription factor binding to the mouse mammary tumor virus (MMTV) promoter.
    Truss M; Bartsch J; Hache RS; Beato M
    J Steroid Biochem Mol Biol; 1993 Dec; 47(1-6):1-10. PubMed ID: 8274422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence similarity between the long terminal repeat coding regions of mammary-tumorigenic BALB/cV and renal-tumorigenic C3H-K strains of mouse mammary tumor virus.
    Kang JJ; Schwegel T; Knepper JE
    Virology; 1993 Sep; 196(1):303-8. PubMed ID: 8395120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing.
    Blank TA; Becker PB
    J Mol Biol; 1996 Jul; 260(1):1-8. PubMed ID: 8676389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome positioning and gene regulation.
    Lu Q; Wallrath LL; Elgin SC
    J Cell Biochem; 1994 May; 55(1):83-92. PubMed ID: 8083303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosomal arrays can be salt-reconstituted on a single-copy MMTV promoter DNA template: their properties differ in several ways from those of comparable 5S concatameric arrays.
    Bash R; Wang H; Yodh J; Hager G; Lindsay SM; Lohr D
    Biochemistry; 2003 Apr; 42(16):4681-90. PubMed ID: 12705831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes.
    Rippe K; Schrader A; Riede P; Strohner R; Lehmann E; Längst G
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15635-40. PubMed ID: 17893337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of DNA sequence and histone-histone interactions on nucleosome placement.
    Shrader TE; Crothers DM
    J Mol Biol; 1990 Nov; 216(1):69-84. PubMed ID: 2172553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of chromatin structure in transcriptional regulation of MMTV LTR hormone-dependent promoter.
    Richard-Foy H; Adom J; Carr K; Gouilleux F; Marsaud V; Redeuilh G; Sabbah M; Sola B
    Rev Esp Fisiol; 1990 Mar; 46(1):31-7. PubMed ID: 2168572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.