BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21762703)

  • 1. Effects of boundaries and geometry on the spatial distribution of action potential duration in cardiac tissue.
    Cherry EM; Fenton FH
    J Theor Biol; 2011 Sep; 285(1):164-76. PubMed ID: 21762703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling.
    Aswath Kumar AK; Drahi A; Jacquemet V
    Comput Biol Med; 2017 Feb; 81():55-63. PubMed ID: 28012295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac electrical dynamics: maximizing dynamical heterogeneity.
    Gilmour RF; Gelzer AR; Otani NF
    J Electrocardiol; 2007; 40(6 Suppl):S51-5. PubMed ID: 17993329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling changes in transmural propagation and susceptibility to arrhythmia induced by volatile anaesthetics in ventricular tissue.
    Zhang H; Tao T; Kharche S; Harrison SM
    J Theor Biol; 2009 Mar; 257(2):279-91. PubMed ID: 19135456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrotonic influences on action potential duration dispersion in small hearts: a simulation study.
    Sampson KJ; Henriquez CS
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H350-60. PubMed ID: 15734889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functional role of electrophysiological heterogeneity in the rabbit ventricle during rapid pacing and arrhythmias.
    Bishop MJ; Vigmond EJ; Plank G
    Am J Physiol Heart Circ Physiol; 2013 May; 304(9):H1240-52. PubMed ID: 23436328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model study of intramural dispersion of action potential duration in the canine pulmonary conus.
    Cates AW; Pollard AE
    Ann Biomed Eng; 1998; 26(4):567-76. PubMed ID: 9662149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for discordant alternans.
    Watanabe MA; Fenton FH; Evans SJ; Hastings HM; Karma A
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):196-206. PubMed ID: 11232619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action potential duration gradients in the heart ventricles and the cardiac electric field during ventricular repolarization (a model study).
    Arteyeva NV; Azarov JE; Vityazev VA; Shmakov DN
    J Electrocardiol; 2015; 48(4):678-85. PubMed ID: 25818745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects.
    Cherry EM; Fenton FH
    Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2332-41. PubMed ID: 14751863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of short term memory and conduction velocity restitution in alternans formation.
    Wei N; Mori Y; Tolkacheva EG
    J Theor Biol; 2015 Feb; 367():21-28. PubMed ID: 25435411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap junction heterogeneity as mechanism for electrophysiologically distinct properties across the ventricular wall.
    Strom M; Wan X; Poelzing S; Ficker E; Rosenbaum DS
    Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H787-94. PubMed ID: 20035026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion of cardiac action potential duration and the initiation of re-entry: a computational study.
    Clayton RH; Holden AV
    Biomed Eng Online; 2005 Feb; 4():11. PubMed ID: 15720712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
    Qu Z; Weiss JN; Garfinkel A
    Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Head-tail interactions in numerical simulations of reentry in a ring of cardiac tissue.
    Chen X; Fenton FH; Gray RA
    Heart Rhythm; 2005 Aug; 2(8):851-9. PubMed ID: 16051124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic origin of spatially discordant alternans in cardiac tissue.
    Hayashi H; Shiferaw Y; Sato D; Nihei M; Lin SF; Chen PS; Garfinkel A; Weiss JN; Qu Z
    Biophys J; 2007 Jan; 92(2):448-60. PubMed ID: 17071663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
    Benson AP; Aslanidi OV; Zhang H; Holden AV
    Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially discordant alternans in cardiomyocyte monolayers.
    de Diego C; Pai RK; Dave AS; Lynch A; Thu M; Chen F; Xie LH; Weiss JN; Valderrábano M
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1417-25. PubMed ID: 18223190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Late phase of repolarization is autoregenerative and scales linearly with action potential duration in mammals ventricular myocytes: a model study.
    Zaniboni M
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):226-33. PubMed ID: 21990326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.