These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21762943)

  • 1. Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy.
    Kim T; Kang J; Lee JH; Yoon J
    Water Res; 2011 Oct; 45(15):4615-22. PubMed ID: 21762943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring bacterial-demineralization of human dentine by electrochemical impedance spectroscopy.
    Xu Z; Neoh KG; Amaechi B; Kishen A
    J Dent; 2010 Feb; 38(2):138-48. PubMed ID: 19804810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system.
    Paredes J; Becerro S; Arizti F; Aguinaga A; Del Pozo JL; Arana S
    Biosens Bioelectron; 2012; 38(1):226-32. PubMed ID: 22705402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry.
    Dheilly A; Linossier I; Darchen A; Hadjiev D; Corbel C; Alonso V
    Appl Microbiol Biotechnol; 2008 May; 79(1):157-64. PubMed ID: 18330564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accurate use of impedance analysis for the study of microbial electrochemical systems.
    Dominguez-Benetton X; Sevda S; Vanbroekhoven K; Pant D
    Chem Soc Rev; 2012 Nov; 41(21):7228-46. PubMed ID: 22885371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria.
    Simões LC; Simões M; Vieira MJ
    Antonie Van Leeuwenhoek; 2010 Oct; 98(3):317-29. PubMed ID: 20405208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation.
    Yang L; Li Y
    J Microbiol Methods; 2006 Jan; 64(1):9-16. PubMed ID: 15936099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model.
    Vitarelli MJ; Prakash S; Talaga DS
    Anal Chem; 2011 Jan; 83(2):533-41. PubMed ID: 21188971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor.
    Pires L; Sachsenheimer K; Kleintschek T; Waldbaur A; Schwartz T; Rapp BE
    Biosens Bioelectron; 2013 Sep; 47():157-63. PubMed ID: 23570679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous flow system for biofilm formation using controlled concentrations of
    Yang D; Reyes-De-Corcuera JI
    Biofouling; 2020 Apr; 36(4):389-402. PubMed ID: 32434379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.
    Malvankar NS; Mester T; Tuominen MT; Lovley DR
    Chemphyschem; 2012 Feb; 13(2):463-8. PubMed ID: 22253215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Method to Reveal a Ureolytic Biofilm Attachment and In Situ Growth Monitoring by Electrochemical Impedance Spectroscopy.
    Romero MC; Ramos G; González I; Ramírez F
    Appl Biochem Biotechnol; 2021 May; 193(5):1379-1396. PubMed ID: 32700202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osseous implant for studies of biomaterials using an in vivo electrochemical transducer.
    Fox WC; Miller MA
    J Biomed Mater Res; 1993 Jun; 27(6):763-73. PubMed ID: 8408106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Application of Impedance Microsensors for Real-Time Analysis of Pseudomonas aeruginosa Biofilm Formation.
    Chabowski K; Junka AF; Szymczyk P; Piasecki T; Sierakowski A; Mączynska B; Nitsch K
    Pol J Microbiol; 2015; 64(2):115-20. PubMed ID: 26373170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATR-IR spectroscopy.
    Kang SY; Bremer PJ; Kim KW; McQuillan AJ
    Langmuir; 2006 Jan; 22(1):286-91. PubMed ID: 16378433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical impedance study of the hematite/water interface.
    Shimizu K; Lasia A; Boily JF
    Langmuir; 2012 May; 28(20):7914-20. PubMed ID: 22540260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Application of Impedance Spectroscopy for
    Guła G; Szymanowska P; Piasecki T; Góras S; Gotszalk T; Drulis-Kawa Z
    Viruses; 2020 Apr; 12(4):. PubMed ID: 32272740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Feature and significance of bacterial biofilm formation in middle-ear mucosa in the rat model of acute otitis media].
    Ke ZY; Yang MB; Gong TG; Liu M
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2011 Mar; 46(3):220-4. PubMed ID: 21575414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.