These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 21762954)
1. Spatial distribution of arsenic and heavy metals in willow roots from a contaminated floodplain soil measured by X-ray fluorescence spectroscopy. Zimmer D; Kruse J; Baum C; Borca C; Laue M; Hause G; Meissner R; Leinweber P Sci Total Environ; 2011 Sep; 409(19):4094-100. PubMed ID: 21762954 [TBL] [Abstract][Full Text] [Related]
2. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada. Courchesne F; Turmel MC; Cloutier-Hurteau B; Constantineau S; Munro L; Labrecque M Int J Phytoremediation; 2017 Jun; 19(6):545-554. PubMed ID: 27996300 [TBL] [Abstract][Full Text] [Related]
3. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils? Vondráčková S; Tlustoš P; Száková J Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494 [TBL] [Abstract][Full Text] [Related]
4. Physiological and proteomic responses of different willow clones (Salix fragilis x alba) exposed to dredged sediment contaminated by heavy metals. Evlard A; Sergeant K; Ferrandis S; Printz B; Renaut J; Guignard C; Paul R; Hausman JF; Campanella B Int J Phytoremediation; 2014; 16(7-12):1148-69. PubMed ID: 24933908 [TBL] [Abstract][Full Text] [Related]
5. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. Tőzsér D; Harangi S; Baranyai E; Lakatos G; Fülöp Z; Tóthmérész B; Simon E Environ Sci Pollut Res Int; 2018 Feb; 25(4):3275-3290. PubMed ID: 29147988 [TBL] [Abstract][Full Text] [Related]
6. Distribution and speciation of metals in annual rings of black willow. Punshon T; Lanzirotti A; Harper S; Bertsch PM; Burger J J Environ Qual; 2005; 34(4):1165-73. PubMed ID: 15942035 [TBL] [Abstract][Full Text] [Related]
7. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
8. Assessment of willow (Salix sp.) as a woody heavy metal accumulator: field survey and in vivo X-ray analyses. Harada E; Hokura A; Nakai I; Terada Y; Baba K; Yazaki K; Shiono M; Mizuno N; Mizuno T Metallomics; 2011 Dec; 3(12):1340-6. PubMed ID: 21969005 [TBL] [Abstract][Full Text] [Related]
9. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals. Hrynkiewicz K; Baum C Environ Technol; 2013; 34(1-4):225-30. PubMed ID: 23530334 [TBL] [Abstract][Full Text] [Related]
10. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
11. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Watson C; Pulford ID; Riddell-Black D Int J Phytoremediation; 2003; 5(4):333-49. PubMed ID: 14750561 [TBL] [Abstract][Full Text] [Related]
12. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Zárubová P; Hejcman M; Vondráčková S; Mrnka L; Száková J; Tlustoš P Environ Sci Pollut Res Int; 2015 Dec; 22(23):18801-13. PubMed ID: 26201656 [TBL] [Abstract][Full Text] [Related]
13. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation. Zalesny RS; Bauer EO Int J Phytoremediation; 2007; 9(4):281-306. PubMed ID: 18246707 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
16. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754 [TBL] [Abstract][Full Text] [Related]
17. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials. Watson C; Pulford ID; Riddell-Black D Int J Phytoremediation; 2003; 5(4):351-65. PubMed ID: 14750562 [TBL] [Abstract][Full Text] [Related]
18. Uptake of Cd, Zn and Mn by willow increases during terrestrialisation of initially ponded polluted sediments. Vandecasteele B; Quataert P; Tack FM Sci Total Environ; 2007 Jul; 380(1-3):133-43. PubMed ID: 17207520 [TBL] [Abstract][Full Text] [Related]
19. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
20. Impact of elemental uptake in the root chemistry of wetland plants. Aryal R; Nirola R; Beecham S; Kamruzzaman M Int J Phytoremediation; 2016 Sep; 18(9):936-42. PubMed ID: 26709636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]