BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21762991)

  • 1. First eye prediction error improves second eye refractive outcome results in 2129 patients after bilateral sequential cataract surgery.
    Aristodemou P; Knox Cartwright NE; Sparrow JM; Johnston RL
    Ophthalmology; 2011 Sep; 118(9):1701-9. PubMed ID: 21762991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of fellow eye data in the calculation of intraocular lens power for the second eye.
    Olsen T
    Ophthalmology; 2011 Sep; 118(9):1710-5. PubMed ID: 21723613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraocular lens power selection in the second eye of patients undergoing bilateral, sequential cataract extraction.
    Covert DJ; Henry CR; Koenig SB
    Ophthalmology; 2010 Jan; 117(1):49-54. PubMed ID: 19815281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraocular lens power in bilateral cataract surgery: whether adjusting for error of predicted refraction in the first eye improves prediction in the second eye.
    Jabbour J; Irwig L; Macaskill P; Hennessy MP
    J Cataract Refract Surg; 2006 Dec; 32(12):2091-7. PubMed ID: 17137989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification.
    Filkorn T; Kovács I; Takács A; Horváth E; Knorz MC; Nagy ZZ
    J Refract Surg; 2012 Aug; 28(8):540-4. PubMed ID: 22785062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the first-eye prediction error in cataract surgery to refine the refractive outcome of the second eye.
    Turnbull AMJ; Barrett GD
    J Cataract Refract Surg; 2019 Sep; 45(9):1239-1245. PubMed ID: 31326224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the second-eye refractive error in patients undergoing bilateral sequential cataract surgery.
    Jivrajka RV; Shammas MC; Shammas HJ
    Ophthalmology; 2012 Jun; 119(6):1097-101. PubMed ID: 22385971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractive and visual outcome of hyperopic cataract cases operated on before and after implementation of the Holladay II formula.
    Fenzl RE; Gills JP; Cherchio M
    Ophthalmology; 1998 Sep; 105(9):1759-64. PubMed ID: 9754188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved refractive outcome for ciliary sulcus-implanted intraocular lenses.
    Dubey R; Birchall W; Grigg J
    Ophthalmology; 2012 Feb; 119(2):261-5. PubMed ID: 22196976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of intraocular lens power calculation methods in eyes that have undergone LASIK.
    Wang L; Booth MA; Koch DD
    Ophthalmology; 2004 Oct; 111(10):1825-31. PubMed ID: 15465542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refractive error after cataract surgery combined with descemet stripping automated endothelial keratoplasty.
    de Sanctis U; Damiani F; Brusasco L; Grignolo F
    Am J Ophthalmol; 2013 Aug; 156(2):254-259.e1. PubMed ID: 23870359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraocular lens power calculations after myopic laser refractive surgery: a comparison of methods in 173 eyes.
    McCarthy M; Gavanski GM; Paton KE; Holland SP
    Ophthalmology; 2011 May; 118(5):940-4. PubMed ID: 21131054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of intraocular lens power calculation by the IOLMaster in phakic and eyes with hydrophobic acrylic lenses.
    Chang SW; Yu CY; Chen DP
    Ophthalmology; 2009 Jul; 116(7):1336-42. PubMed ID: 19427697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of intraocular lens haptic design on refractive error.
    Savini G; Barboni P; Ducoli P; Borrelli E; Hoffer KJ
    J Cataract Refract Surg; 2014 Sep; 40(9):1473-8. PubMed ID: 25135539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of the refractive prediction determined by multiple currently available intraocular lens power calculation formulas in small eyes.
    Carifi G; Aiello F; Zygoura V; Kopsachilis N; Maurino V
    Am J Ophthalmol; 2015 Mar; 159(3):577-83. PubMed ID: 25524494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving refractive outcomes at extreme axial lengths with the IOLMaster: the optical axial length and keratometric transformation.
    Fam HB; Lim KL
    Br J Ophthalmol; 2009 May; 93(5):678-83. PubMed ID: 19168467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of intraocular lens power calculations in eyes with axial length <22.00 mm.
    Day AC; Foster PJ; Stevens JD
    Clin Exp Ophthalmol; 2012 Dec; 40(9):855-62. PubMed ID: 22594574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of the SRK/T formula using A-Scan ultrasound biometry after phacoemulsification in eyes with short and long axial lengths.
    Karabela Y; Eliacik M; Kaya F
    BMC Ophthalmol; 2016 Jul; 16():96. PubMed ID: 27391470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery.
    Aristodemou P; Knox Cartwright NE; Sparrow JM; Johnston RL
    J Cataract Refract Surg; 2011 Jan; 37(1):50-62. PubMed ID: 21183099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized constants for an ultraviolet light-adjustable intraocular lens.
    Conrad-Hengerer I; Dick HB; Hütz WW; Haigis W; Hengerer FH
    J Cataract Refract Surg; 2011 Dec; 37(12):2101-4. PubMed ID: 22108105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.