BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21763120)

  • 1. Review of biosolids management options and co-incineration of a biosolid-derived fuel.
    Roy MM; Dutta A; Corscadden K; Havard P; Dickie L
    Waste Manag; 2011 Nov; 31(11):2228-35. PubMed ID: 21763120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technological options for the management of biosolids.
    Wang H; Brown SL; Magesan GN; Slade AH; Quintern M; Clinton PW; Payn TW
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):308-17. PubMed ID: 18488261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative risk assessment of cruise ships biosolids disposal alternatives.
    Avellaneda PM; Englehardt JD; Olascoaga J; Babcock EA; Brand L; Lirman D; Rogge WF; Solo-Gabriele H; Tchobanoglous G
    Mar Pollut Bull; 2011 Oct; 62(10):2157-69. PubMed ID: 21821268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.
    Samolada MC; Zabaniotou AA
    Waste Manag; 2014 Feb; 34(2):411-20. PubMed ID: 24290971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.
    Waldner MH; Halter R; Sigg A; Brosch B; Gehrmann HJ; Keunecke M
    Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.
    Wang L; Templer R; Murphy RJ
    Bioresour Technol; 2012 Sep; 120():89-98. PubMed ID: 22784958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosolids and Sludge Management.
    Fitzmorris Brisolara K; Ochoa H
    Water Environ Res; 2016 Oct; 88(10):1230-48. PubMed ID: 27620088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.
    Hedman B; Burvall J; Nilsson C; Marklund S
    Waste Manag; 2005; 25(3):311-21. PubMed ID: 15823746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medical waste management in Korea.
    Jang YC; Lee C; Yoon OS; Kim H
    J Environ Manage; 2006 Jul; 80(2):107-15. PubMed ID: 16338054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculator tool for determining greenhouse gas emissions for biosolids processing and end use.
    Brown S; Beecher N; Carpenter A
    Environ Sci Technol; 2010 Dec; 44(24):9509-15. PubMed ID: 21080649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.
    Münster M; Meibom P
    Waste Manag; 2010 Dec; 30(12):2510-9. PubMed ID: 20471819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaseous emissions from waste combustion.
    Werther J
    J Hazard Mater; 2007 Jun; 144(3):604-13. PubMed ID: 17339077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosolids and Sludge Management.
    Brisolara KF; Qi Y; Baldassari M; Bourgeois C
    Water Environ Res; 2017 Oct; 89(10):1245-1267. PubMed ID: 28954658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.
    Liu J; Jiang X; Zhou L; Wang H; Han X
    J Hazard Mater; 2009 Aug; 167(1-3):817-23. PubMed ID: 19249155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Municipal waste management and energy recovery in an Italian region.
    Cucchiella F; D'Adamo I; Gastaldi M
    Waste Manag Res; 2012 Dec; 30(12):1290-8. PubMed ID: 23027033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of disposal technologies for chromated copper arsenate (CCA) treated wood waste, with detailed analyses of thermochemical conversion processes.
    Helsen L; Van den Bulck E
    Environ Pollut; 2005 Mar; 134(2):301-14. PubMed ID: 15589657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant.
    Meunier N; Blais JF; Lounès M; Tyagi RD; Sasseville JL
    Water Sci Technol; 2002; 46(10):33-41. PubMed ID: 12479450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.