BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21763130)

  • 21. From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer.
    Liu Y; Tüysüz H; Jia CJ; Schwickardi M; Rinaldi R; Lu AH; Schmidt W; Schüth F
    Chem Commun (Camb); 2010 Feb; 46(8):1238-40. PubMed ID: 20449262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamics and inhibition studies of lipozyme TL IM in biodiesel production via enzymatic transesterification.
    Khor GK; Sim JH; Kamaruddin AH; Uzir MH
    Bioresour Technol; 2010 Aug; 101(16):6558-61. PubMed ID: 20363621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A tailored catalyst for the sustainable conversion of glycerol to acrolein: mechanistic aspect of sequential dehydration.
    Yun D; Kim TY; Park DS; Yun YS; Han JW; Yi J
    ChemSusChem; 2014 Aug; 7(8):2193-201. PubMed ID: 25045005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autothermal catalytic partial oxidation of glycerol to syngas and to non-equilibrium products.
    Rennard DC; Kruger JS; Schmidt LD
    ChemSusChem; 2009; 2(1):89-98. PubMed ID: 19156694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methoxyflurane enhances allyl alcohol hepatotoxicity in rats. Possible involvement of increased acrolein formation.
    Kershaw WC; Barsotti DA; Leonard TB; Dent JG; Lage GL
    Drug Metab Dispos; 1989; 17(2):117-22. PubMed ID: 2565200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nickel removal from nickel-5,10,15,20-tetraphenylporphine using supercritical water in absence of catalyst: a basic study.
    Mandal PC; Wahyudiono ; Sasaki M; Goto M
    J Hazard Mater; 2011 Mar; 187(1-3):600-3. PubMed ID: 21300437
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics and activation parameter analysis for the prebiotic oligocytidylate formation on Na(+)-montmorillonite at 0-100 degrees C.
    Kawamura K; Maeda J
    J Phys Chem A; 2008 Sep; 112(35):8015-23. PubMed ID: 18693705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decomposition and decoloration of synthetic dyes using hot/liquid (subcritical) water.
    Hosseini SD; Asghari FS; Yoshida H
    Water Res; 2010 Mar; 44(6):1900-8. PubMed ID: 19948352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolysis of glycerol for the production of hydrogen or syn gas.
    Valliyappan T; Bakhshi NN; Dalai AK
    Bioresour Technol; 2008 Jul; 99(10):4476-83. PubMed ID: 17951053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of oxygenated fuel additives via the solventless etherification of glycerol.
    Ayoub M; Khayoon MS; Abdullah AZ
    Bioresour Technol; 2012 May; 112():308-12. PubMed ID: 22437049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous siliconiobium phosphate as a pure Brønsted acid catalyst with excellent performance for the dehydration of glycerol to acrolein.
    Choi Y; Park DS; Yun HJ; Baek J; Yun D; Yi J
    ChemSusChem; 2012 Dec; 5(12):2460-8. PubMed ID: 23132784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A revisited picture of the mechanism of glycerol dehydration.
    Laino T; Tuma C; Curioni A; Jochnowitz E; Stolz S
    J Phys Chem A; 2011 Apr; 115(15):3592-5. PubMed ID: 21452849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.
    Posada JA; Rincón LE; Cardona CA
    Bioresour Technol; 2012 May; 111():282-93. PubMed ID: 22349197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of amino acid production from bean dregs by hydrolysis in sub-critical water.
    Zhu G; Zhu X; Fan Q; Wan X
    Amino Acids; 2011 Apr; 40(4):1107-13. PubMed ID: 20830496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration of the effect of process variables on the production of high-value fuel gas from glucose via supercritical water gasification.
    Hendry D; Venkitasamy C; Wilkinson N; Jacoby W
    Bioresour Technol; 2011 Feb; 102(3):3480-7. PubMed ID: 21112208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in subcritical and supercritical waters.
    Hashimoto M; Taniguchi S; Takanami R; Giri RR; Ozaki H
    Water Sci Technol; 2010; 62(3):484-90. PubMed ID: 20705994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-step supercritical dimethyl carbonate method for biodiesel production from Jatropha curcas oil.
    Ilham Z; Saka S
    Bioresour Technol; 2010 Apr; 101(8):2735-40. PubMed ID: 19932022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Further studies on the conversion of 4-hydroxyoxazaphosphorines to reactive mustards and acrolein in inorganic buffers.
    Low JE; Borch RF; Sladek NE
    Cancer Res; 1983 Dec; 43(12 Pt 1):5815-20. PubMed ID: 6640533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The oxidation of acrolein by rat liver aldehyde dehydrogenases. Relation to allyl alcohol hepatotoxicity.
    Rikans LE
    Drug Metab Dispos; 1987; 15(3):356-62. PubMed ID: 2886311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process.
    Lee JH; Kim SB; Kang SW; Song YS; Park C; Han SO; Kim SW
    Bioresour Technol; 2011 Jan; 102(2):2105-8. PubMed ID: 20813518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.