BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21763174)

  • 1. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiovascular and lung mesh generation based on centerlines.
    Marchandise E; Geuzaine C; Remacle JF
    Int J Numer Method Biomed Eng; 2013 Jun; 29(6):665-82. PubMed ID: 23606344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and hexahedral meshing of cerebral arterial networks from centerlines.
    Decroocq M; Frindel C; Rougé P; Ohta M; Lavoué G
    Med Image Anal; 2023 Oct; 89():102912. PubMed ID: 37549612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions.
    Auer M; Gasser TC
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1022-8. PubMed ID: 20335091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation.
    Ghaffari M; Tangen K; Alaraj A; Du X; Charbel FT; Linninger AA
    Comput Biol Med; 2017 Dec; 91():353-365. PubMed ID: 29126049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling.
    Raut SS; Liu P; Finol EA
    J Biomech; 2015 Jul; 48(10):1972-81. PubMed ID: 25976018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi.
    Tarjuelo-Gutierrez J; Rodriguez-Vila B; Pierce DM; Fastl TE; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Holzapfel GA; Gomez EJ
    Med Biol Eng Comput; 2014 Feb; 52(2):159-68. PubMed ID: 24306943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography.
    Antiga L; Ene-Iordache B; Remuzzi A
    IEEE Trans Med Imaging; 2003 May; 22(5):674-84. PubMed ID: 12846436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific computational haemodynamics: generation of structured and conformal hexahedral meshes from triangulated surfaces of vascular bifurcations.
    De Santis G; De Beule M; Segers P; Verdonck P; Verhegghe B
    Comput Methods Biomech Biomed Engin; 2011 Sep; 14(9):797-802. PubMed ID: 21390938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation and reconstruction of vascular structures for 3D real-time simulation.
    Wu X; Luboz V; Krissian K; Cotin S; Dawson S
    Med Image Anal; 2011 Feb; 15(1):22-34. PubMed ID: 20655274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for the generation of multi-block computational structured grids from medical imaging of arterial bifurcations.
    Makris E; Neofytou P; Tsangaris S; Housiadas C
    Med Eng Phys; 2012 Oct; 34(8):1157-66. PubMed ID: 22209311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexahedral meshing of subject-specific anatomic structures using mapped building blocks.
    Kallemeyn NA; Natarajan A; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2013; 16(6):602-11. PubMed ID: 22185480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography.
    De Santis G; Mortier P; De Beule M; Segers P; Verdonck P; Verhegghe B
    Med Biol Eng Comput; 2010 Apr; 48(4):371-80. PubMed ID: 20162466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm.
    Reeps C; Gee M; Maier A; Gurdan M; Eckstein HH; Wall WA
    J Vasc Surg; 2010 Mar; 51(3):679-88. PubMed ID: 20206812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach.
    Bols J; Taelman L; De Santis G; Degroote J; Verhegghe B; Segers P; Vierendeels J
    Comput Methods Biomech Biomed Engin; 2016; 19(6):663-72. PubMed ID: 26208183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesh development for a finite element model of the carotid artery.
    Gayzik FS; Tan JC; Duma SM; Stitzel JD
    Biomed Sci Instrum; 2006; 42():187-92. PubMed ID: 16817606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer modeling for the prediction of thoracic aortic stent graft collapse.
    Pasta S; Cho JS; Dur O; Pekkan K; Vorp DA
    J Vasc Surg; 2013 May; 57(5):1353-61. PubMed ID: 23313184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of in vivo material and geometric parameters of a human aorta: toward patient-specific modeling of abdominal aortic aneurysm.
    Zeinali-Davarani S; Raguin LG; Vorp DA; Baek S
    Biomech Model Mechanobiol; 2011 Oct; 10(5):689-99. PubMed ID: 21053043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.