These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 21763328)

  • 1. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature.
    Prabhakarpandian B; Shen MC; Pant K; Kiani MF
    Microvasc Res; 2011 Nov; 82(3):210-20. PubMed ID: 21763328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of shear adhesion map using SynVivo synthetic microvascular networks.
    Smith AM; Prabhakarpandian B; Pant K
    J Vis Exp; 2014 May; (87):. PubMed ID: 24893648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion patterns in the microvasculature are dependent on bifurcation angle.
    Lamberti G; Soroush F; Smith A; Kiani MF; Prabhakarpandian B; Pant K
    Microvasc Res; 2015 May; 99():19-25. PubMed ID: 25708050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational fluid dynamics in the microcirculation and microfluidics: what role can the lattice Boltzmann method play?
    O'Connor J; Day P; Mandal P; Revell A
    Integr Biol (Camb); 2016 May; 8(5):589-602. PubMed ID: 27068565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic microvascular networks for quantitative analysis of particle adhesion.
    Prabhakarpandian B; Pant K; Scott RC; Pattillo CB; Irimia D; Kiani MF; Sundaram S
    Biomed Microdevices; 2008 Aug; 10(4):585-95. PubMed ID: 18327641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels.
    Namdee K; Thompson AJ; Charoenphol P; Eniola-Adefeso O
    Langmuir; 2013 Feb; 29(8):2530-5. PubMed ID: 23363293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential adhesion of leukocytes near bifurcations is endothelium independent.
    Tousi N; Wang B; Pant K; Kiani MF; Prabhakarpandian B
    Microvasc Res; 2010 Dec; 80(3):384-8. PubMed ID: 20624406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelialized microfluidics for studying microvascular interactions in hematologic diseases.
    Myers DR; Sakurai Y; Tran R; Ahn B; Hardy ET; Mannino R; Kita A; Tsai M; Lam WA
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-guided simulation in comparison with laser speckle contrast imaging for full-field observation of blood flow in a microvasculature model.
    Yang Y; Geng J; Zhang H; Chen C; Li W; Qian Z; Li S
    Microvasc Res; 2021 Jan; 133():104092. PubMed ID: 33007315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro.
    Moses SR; Adorno JJ; Palmer AF; Song JW
    Am J Physiol Cell Physiol; 2021 Jan; 320(1):C92-C105. PubMed ID: 33176110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of leukocyte margination in rectangular microchannels.
    Jain A; Munn LL
    PLoS One; 2009 Sep; 4(9):e7104. PubMed ID: 19768109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling structural adaptation of microcirculation.
    Pries AR; Secomb TW
    Microcirculation; 2008 Nov; 15(8):753-64. PubMed ID: 18802843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifurcations: focal points of particle adhesion in microvascular networks.
    Prabhakarpandian B; Wang Y; Rea-Ramsey A; Sundaram S; Kiani MF; Pant K
    Microcirculation; 2011 Jul; 18(5):380-9. PubMed ID: 21418388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Open-top" microfluidic device for in vitro three-dimensional capillary beds.
    Oh S; Ryu H; Tahk D; Ko J; Chung Y; Lee HK; Lee TR; Jeon NL
    Lab Chip; 2017 Oct; 17(20):3405-3414. PubMed ID: 28944383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature.
    Dabagh M; Randles A
    PLoS One; 2019; 14(2):e0211418. PubMed ID: 30794550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.