These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21763356)

  • 1. Specializations in a successful parasite: what makes the bloodstream-form African trypanosome so deadly?
    Gadelha C; Holden JM; Allison HC; Field MC
    Mol Biochem Parasitol; 2011 Oct; 179(2):51-8. PubMed ID: 21763356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Inhibition of Bromodomain Proteins in Insect-Stage African Trypanosomes Perturbs Silencing of the Variant Surface Glycoprotein Repertoire and Results in Widespread Changes in the Transcriptome.
    Ashby EC; Havens JL; Rollosson LM; Hardin J; Schulz D
    Microbiol Spectr; 2023 Jun; 11(3):e0014723. PubMed ID: 37097159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei.
    Hovel-Miner G; Mugnier M; Papavasiliou FN; Pinger J; Schulz D
    Results Probl Cell Differ; 2015; 57():23-46. PubMed ID: 26537376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcript expression analysis of putative Trypanosoma brucei GPI-anchored surface proteins during development in the tsetse and mammalian hosts.
    Savage AF; Cerqueira GC; Regmi S; Wu Y; El Sayed NM; Aksoy S
    PLoS Negl Trop Dis; 2012; 6(6):e1708. PubMed ID: 22724039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell RNA sequencing of
    Vigneron A; O'Neill MB; Weiss BL; Savage AF; Campbell OC; Kamhawi S; Valenzuela JG; Aksoy S
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2613-2621. PubMed ID: 31964820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural similarities between the metacyclic and bloodstream form variant surface glycoproteins of the African trypanosome.
    Chandra M; Đaković S; Foti K; Zeelen JP; van Straaten M; Aresta-Branco F; Tihon E; Lübbehusen N; Ruppert T; Glover L; Papavasiliou FN; Stebbins CE
    PLoS Negl Trop Dis; 2023 Feb; 17(2):e0011093. PubMed ID: 36780870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antigenic variation during the developmental cycle of Trypanosoma brucei.
    Hajduk SL
    J Protozool; 1984 Feb; 31(1):41-7. PubMed ID: 6204043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Receptor's Tale: An Eon in the Life of a Trypanosome Receptor.
    Higgins MK; Lane-Serff H; MacGregor P; Carrington M
    PLoS Pathog; 2017 Jan; 13(1):e1006055. PubMed ID: 28125726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flying tryps: survival and maturation of trypanosomes in tsetse flies.
    Dyer NA; Rose C; Ejeh NO; Acosta-Serrano A
    Trends Parasitol; 2013 Apr; 29(4):188-96. PubMed ID: 23507033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonuclease H1-targeted R-loops in surface antigen gene expression sites can direct trypanosome immune evasion.
    Briggs E; Crouch K; Lemgruber L; Lapsley C; McCulloch R
    PLoS Genet; 2018 Dec; 14(12):e1007729. PubMed ID: 30543624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple mechanisms of immune evasion by African trypanosomes.
    Donelson JE; Hill KL; El-Sayed NM
    Mol Biochem Parasitol; 1998 Mar; 91(1):51-66. PubMed ID: 9574925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variant antigen diversity in Trypanosoma vivax is not driven by recombination.
    Silva Pereira S; de Almeida Castilho Neto KJG; Duffy CW; Richards P; Noyes H; Ogugo M; Rogério André M; Bengaly Z; Kemp S; Teixeira MMG; Machado RZ; Jackson AP
    Nat Commun; 2020 Feb; 11(1):844. PubMed ID: 32051413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. African trypanosomes: the genome and adaptations for immune evasion.
    Rudenko G
    Essays Biochem; 2011; 51():47-62. PubMed ID: 22023441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian African trypanosome VSG coat enhances tsetse's vector competence.
    Aksoy E; Vigneron A; Bing X; Zhao X; O'Neill M; Wu YN; Bangs JD; Weiss BL; Aksoy S
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6961-6. PubMed ID: 27185908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigenic variation and the African trypanosome genome.
    Donelson JE
    Acta Trop; 2003 Mar; 85(3):391-404. PubMed ID: 12659976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bloodstream form Trypanosome plasma membrane proteins: antigenic variation and invariant antigens.
    Schwede A; Carrington M
    Parasitology; 2010 Dec; 137(14):2029-39. PubMed ID: 20109254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antigenic variation in African trypanosomes: monitoring progress.
    McCulloch R
    Trends Parasitol; 2004 Mar; 20(3):117-21. PubMed ID: 15036032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation.
    Pinger J; Chowdhury S; Papavasiliou FN
    Nat Commun; 2017 Oct; 8(1):828. PubMed ID: 29018220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex.
    Faria J; Glover L; Hutchinson S; Boehm C; Field MC; Horn D
    Nat Commun; 2019 Jul; 10(1):3023. PubMed ID: 31289266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanosomes expressing a mosaic variant surface glycoprotein coat escape early detection by the immune system.
    Dubois ME; Demick KP; Mansfield JM
    Infect Immun; 2005 May; 73(5):2690-7. PubMed ID: 15845470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.