These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21764314)

  • 1. Influence of an unexpected perturbation on adaptive gait behavior.
    Rhea CK; Rietdyk S
    Gait Posture; 2011 Jul; 34(3):439-41. PubMed ID: 21764314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it.
    Timmis MA; Buckley JG
    Gait Posture; 2012 May; 36(1):160-2. PubMed ID: 22424759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstacle crossing in people with Parkinson's disease: foot clearance and spatiotemporal deficits.
    Galna B; Murphy AT; Morris ME
    Hum Mov Sci; 2010 Oct; 29(5):843-52. PubMed ID: 19962206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proactive gait strategies to mitigate risk of obstacle contact are more prevalent with advancing age.
    Muir BC; Haddad JM; Heijnen MJ; Rietdyk S
    Gait Posture; 2015 Jan; 41(1):233-9. PubMed ID: 25455212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait adaptation during obstacle crossing reveals impairments in the visual control of locomotion in Williams syndrome.
    Hocking DR; Rinehart NJ; McGinley JL; Galna B; Moss SA; Bradshaw JL
    Neuroscience; 2011 Dec; 197():320-9. PubMed ID: 21945032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of anterior load carriage on lower limb gait parameters during obstacle clearance.
    Perry CJ; Kiriella JB; Hawkins KM; Shanahan CJ; Moore AE; Gage WH
    Gait Posture; 2010 May; 32(1):57-61. PubMed ID: 20382021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes to control of adaptive gait in individuals with long-standing reduced stereoacuity.
    Buckley JG; Panesar GK; MacLellan MJ; Pacey IE; Barrett BT
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2487-95. PubMed ID: 20335609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors leading to obstacle contact during adaptive locomotion.
    Heijnen MJ; Muir BC; Rietdyk S
    Exp Brain Res; 2012 Nov; 223(2):219-31. PubMed ID: 22972450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of vision, proprioception, and efference copy in storing a neural representation for guiding trail leg trajectory over an obstacle.
    Lajoie K; Bloomfield LW; Nelson FJ; Suh JJ; Marigold DS
    J Neurophysiol; 2012 Apr; 107(8):2283-93. PubMed ID: 22298832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait modification during approach phase when stepping over an obstacle in rats.
    Sato Y; Aoki S; Yanagihara D
    Neurosci Res; 2012 Mar; 72(3):263-9. PubMed ID: 22178543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of peripheral visual cues in planning and controlling adaptive gait.
    Graci V; Elliott DB; Buckley JG
    Optom Vis Sci; 2010 Jan; 87(1):21-7. PubMed ID: 19918210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpolation techniques to reduce error in measurement of toe clearance during obstacle avoidance.
    Heijnen MJ; Muir BC; Rietdyk S
    J Biomech; 2012 Jan; 45(1):196-8. PubMed ID: 22018579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failures in adaptive locomotion: trial-and-error exploration to determine adequate foot elevation over obstacles.
    Heijnen MJH; Rietdyk S
    Exp Brain Res; 2018 Jan; 236(1):187-194. PubMed ID: 29119208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait characteristics during inadvertent obstacle contacts in young, middle-aged and older adults.
    Muir BC; Bodratti LA; Morris CE; Haddad JM; van Emmerik REA; Rietdyk S
    Gait Posture; 2020 Mar; 77():100-104. PubMed ID: 32006717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body-foot geometries as revealed by perturbed obstacle position with different time constraints.
    Dugas LP; Bouyer LJ; McFadyen BJ
    Exp Brain Res; 2018 Mar; 236(3):711-720. PubMed ID: 29299643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of task constraints on obstacle avoidance strategies in patients with cerebellar disease.
    Kim YH; Song YG; Park IS; Rhyu IJ; Kim SB; Park JH
    Gait Posture; 2013 Apr; 37(4):521-5. PubMed ID: 23022155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.